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1 Accuracy of Response of
Single-Degree-of-Freedom
Systems to Ground Motion

1.0 Introduction

This report summari zes the results of an assessment of the accuracy of
response of six numerical step-by-step procedures used in computational struc-

tural dynamics. The six algorithms used in this study are representative of the
different types of numerical procedures used to compute the dynamic structural
response to a tirnedependent loading history. The timedependent loading envi-
sioned in this research is that of the motion of the ground below a discrete struc-

tural model and is expressed in terms of a ground acceleration time-history. The
dynamic structural response for each structural model used in this study is charac-

terized by the computed response time-histories of accelerations, velocities, and
displacements.

All structural models used in this study are linear, singledegree-of-fkedom

(SDOF) systems. The natural (undamped) periods Toof these SDOF systems are
selected based on consideration of the important modal periods of hydraulic struc-
tures such as gravity dams, arch dams, gravity lock walls, U-frame locks, and
intake towers. The forcing fimctions used in this study are single frequency har-
monics. The use of a single frequency facilitated the ewduation of the accuracy of
the computed responses solved for at regular time increments during ground
motion.

The time increments At used in the analyses are 0.02,0.01, and 0.005 seconds.
These values are typical of the At used in discretizing earthquake acceleration
time-histories (e.g., Hudson 1979) recorded in the field on strong motion accelero-
graphs (shown in Figure 6.1.1 in Chopra 1995).

Chapter 1 Accuracy of Response of Single-Degr=f-Freedom Systems to Ground Motion 1



1.1 Six Methods
Responses

Used to Compute Time Domain

The six algorithms included in this study are the Newmark ~ method (with

values of constants y and ~ corresponding to the linear acceleration method), the
Wilson O method, the Central Difference Method, the 4ti Order Runge-Kutta
method, Duhamel’s integral solved in a piecewise exact fmhion, and the Piecewise
Exact Method applied directly. All of these algorithms were used in their

discretized forms (i.e., the loading and response histories were divided into a
sequence of time intervals); thus, they are characterized as step-by-step
procedures.

The six algorithms used can be categorized into two main groups, depending on

their general approach to satis@ing the differential equation of motion. The first

group includes Duhamel’s integral solved in a piecewise exact fmhion and the
PieceWise Exact Method applied directly. These two methods formulate exact
solutions to the equation of motion for assumed forms of the timedependent forc-
ing functions (i.e., the loading is approximated by a series of straight lines between

the time-steps). The second group includes Newmark (3method, Wilson (3
method, Central Difference Method, and 4* Order Runge-Kutta Method. These
methods are referred to as numerical methods because they approximately satis~

the equation of motion during each time-step for the given loading. The New-
mark ~, Wilson 6, and 4* Order Runge-Kutta methods use numerical integration
to step through the analysis of the time response problem, where the Central Dif-
ference Method uses numerical differentiation.

1.2 Direct Integration Methods

The linear acceleration method, Wilson’s 0 method, and the 4* Order Runge-

Kutta method are examples of direct integration methods. The term “direct”
means that prior to numerical integration, there is no transformation of the equa-
tions into a different form, such as is done in a tlequency domain analysis. Inte-
gration methods are discrete in that the response values are solved for at regular
increments in time during ground motion, which are separated by a time increment
At.

Direct integration methods are based on two concepts. First, the equation of

motion for the structural model is satisfied at discrete points in time (i.e., t,t+ At,
t + 2At, ...) during ground motion. Second, the forms of the variation in displace-
ment, velocity, and acceleration responses within each time interval At are

assumed.

Chapter 1 Accuracy of Response of Single-Degrae-of-Freedom Systems to Ground Motion



1.3 Difference Between Implicit and Explicit
Numerical Methods

Numerical methods such as direct integration methods are classified as either

explicit or implicit integration methods. Chopra (1995), Subbaraj and Dokainish
(1989a,b), Bathe (1982), and Bathe and Wilson (1976) distinguish between the
two numerical methods as follows. The explicit integration method solves for the

unknown values of displacement xi +Al, velocity x~+At, and acceleration ~ +At, at
each new time t + At using the equation of motion for the structural model at
time t, with the unknown values for x~,x~,and ~ at time tas the initial conditions.
The implicit integration method solves for the unknown values of xl, At, &. At,

and ~+ A~at each new time t + At using the equation of motion at time t + At. For
multipledegree-of-freedom (MDOF) systems, implicit schemes require the solu-

tion of a set of simultaneous linear equations, whereas explicit schemes involve
the solution of a set of linear equations, each of which involves a single unknown.
Thus, the explicit integration method does not require a factorization of-the

coefficient matrix in the step-by-step solution of the equations of motion for the
semidiscrete MDOF structural system model. The coefficient matrix is a com-
bination of the stifiess, mass, and damping matrices of the MDOF model.

Along with others, Subbaraj and Dokainish (1989a,b) noted that implicit algo-

rithms are most effective for structural dynamics problems (in which the response
is controlled by a relatively small number of Iow-frequency modes), while explicit

algorithms are very efficient for wave propagation problems (in which the contri-
bution of intermediate- and high-frequency structural modes to the response is
important). Accordingly, of the two types of numerical methods, implicit algo-
rithms are more popular in earthquake engineering problems because of the larger
time-step that may be used in the analysis.

However, implicit procedures involve considerable computational effort at each

time-step compared with explicit methods for MDOF semidiscrete models since
the coefficient matrices must be formulated, stored, and manipulated using matrix
solution procedures. Therefore, in blast type problems where a small time-step is
required to capture the structural response of large-scale models involving hun-

dreds to thousands of degrees of freedom, implicit methods are computationally
impractical, and explicit methods are the preferred type of algorithm.

Two explicit algorithms, the Central Difference Method and the 4ti Order
Runge-Kutta method, are included in this study. The original 1959 linear acceler-

ation method version of the Newmark (3ftily of numerical methods and Wilson’s
6 method are classified as implicit methods (Newark 1959). In general, implicit
integration methods are frequently used by the structural dynamics/earthquake
engineering community to solve for the response of semidiscrete MDOF structural
models to earthquake excitation.

Chapter 1 Accuracy of Response of Single-Degree-of-Freedom Systems to Ground Motion 3



1.4 Questions of the Accuracy of All Six Step-by-
Step Methods and the Stability of Numerical
Integration and Numerical Differentiation
Methods

The selection of the size of the time-step At to be used in the step-by-step cal-
culation of the dynamic response of the SDOF (and of MDOF semidiscrete struc-
tural models) is restricted by stability and/or accuracy considerations for the
six algorithms included in this study. The primary requirement of a numerical
algorithm is that the computed response converge to the exact response as At+ O
(Hughes 1987). However, the number of computations increases as the time-step
At is made smaller in a dynamic analysis, an important issue for response analysis

of semidiscrete MDOF structural system models.

In addition to accuracy considerations, stability requirements must also be con-

sidered during the selection of the time-step At to be used in a step-by-step
response analysis either by the three numerical integration methods or by the
numerical differentiation method. Stability criterion is expressed in terms of a
maximum allowable size for the time-step, Atcritiml.The value for AtCritiC.ldiflers

among the four numerical algorithms.

No stability criteria (expressed in terms of a limiting time-step value) are
needed for Duhamel’s integral solved in a piecewise exact fashion and the Piece-
wise Exact Method applied directly. This is because these two methods formulate

exact solutions to the equation of motion for assumed forms of the timedependent
forcing fimctions. There is only a question of the accuracy of the assumed form
for the forcing function for the size time-step At being used in the analysis. In

general, larger time-steps are likely to make the assumed form for the forcing
fimction less valid.

1.5 Contents

Chapter 2 outlines the six algorithms used in this study to compute the
response of an SDOF structural system. The stability criteria for the three numer-
ical integration methods and for the numerical differentiation method are given in
Chapter 3. These stability criteria are reviewed and their relevance to structural
dynamicsku-thquake engineering problems is discussed. Also, a numerical
assessment of the largest time-step AtCritiC.lthat can be used in the response anal-
ysis is given. Conclusions are made concerning the stability criteria for the SDOF
systems subjected to ground motion with At equal to 0.02, 0.01 and 0.005 sec-
onds. A brief discussion and example application of stability criteria for semidis-
crete MDOF structural system models are also included.

Using damped SDOF system models with natural periods assigned based on
consideration of the modal periods of hydraulic structures providing significant

Chapter 1 Accuracy of Response of Single-Degree-of-Freedom Systems to Ground Motion



response contribution, an evaluation is made of the accuracy of the computed
response values solved for at regular time increments during ground motion. All

SDOF systems are assigned 5 percent darnping. The results of this extensive
series of numerical evaluations are summarized in Chapter 4. The results show
the correlation of the accuracy of the six numerical step-by-step procedures, the
harmonic characteristics of the ground motion, and the time-step At value (0.02,
0.01 or 0.005 seconds) used in the analysis. Also included is numerical assess-

ment of the accuracy of the algorithms for computing the dynamic response of
SDOF models in~ree vibration.

Chapter 5 summari zes the results of this study of the accuracy of six numerical

step-by-step procedures used to compute the dynamic response of SDOF models
with 5 percent damping. A brief discussion of the response analysis of semidis-

crete MDOF structural system models to ground motion using numerical step-by-
step procedures is also included.

Appendix A gives the exact solution to a SDOF system subjected tc-a sine

wave base excitation.

Appendix B gives the Fourier series representation for a periodic fi.mction and

the response of an SDOF system to a periodic force represented by a Fourier
series. This algorithm is in the same category of algorithms as Duhamel’s integral
solved in a piecewise exact fashion and the Piecewise Exact Method applied
directly in that it is an exact solution to an approximation of the actual loading.

Chapter 1 Accuracy of Response of SingleDegree+f-Freedom Systems to Ground Motion 5



2 Six Numerical Step-by-Step
Procedures of Analysis of

the Equation of Motion for
an SDOF System

2.0 Introduction

This chapter outlines six numerical procedures for solving the dynamic
response of SDOF models by solution of the dynamic equilibrium equation at
closely spaced, discrete time intervals throughout the time of shaking. A base
acceleration is used for the timedependent loading. The dynamic response of each
SDOF system used is characterized by the computed response time-histories of
accelerations, velocities, and displacements. The next section begins with a sum-
mary of the equation of motion for an SDOF system model subjected to a base
acceleration (e.g., ground motion).

The six algorithms included in this study are the Newmark ~ method (with

values of constants y and ~ corresponding to the linear acceleration method), the
Wilson 6 method, the Central Difference Method, the 4ti Order Runge-Kutta
meth~ DuhameI’s integral solved in a piecewise exact fmhion, and the Piecewise
Exact Method applied directly. All of the algorithms were used in their discretized
forms (i.e., the loading and response histories were divided into a sequence of time
intervals); thus, they are characterized as step-by-step procedures.

These six algorithms can be categorized into two main groups, depending on

their general approach to satis&ing the differential equation of motion. The first
group includes Duhamel’s integral solved in a piecewise exact fizshion and the
Piecewise Exact Method applied directly. These two methods formulate exact
solutions to the equation of motion for assumed forms of the timedependent forc-
ing fimctions (i.e., the loading is approximated by a series of straight lines between
the time-steps). This group is easily identified by the fict that the total response
consists of two parts: a transient (or free vibration) response contribution and the
steady-state response (or particular solution to the specified form of the loading).

Chapter 2 Six Numerical Stap-by-Step Procedures



The second group of algorithms includes the Newmark ~ method, Wilson 0
method, Central Difference Method, and 4* Order Runge-Kutta method. These
methods are referred to as numerical methods because they approximately satis@

the equation of motion during each time-step for the given loading. The New-
mark (3,Wilson 0, and 4* Order Runge-Kutta methods use numerical integration
to step through the analysis of the time response problem, where the Central Dif-
ference Method uses numerical differentiation.

2.1 Equation of Motion for SDOF System

Consider the case shown in Figure la of an idealized SDOF system subjected
to a time-varying forcing fimction P(O. At time equal to t, the SDOF system dis-
places a distance x(O from its at-rest position due to the applied force of P(O, as

shown in Figure 2. For a linear SDOF system acted on by an externally applied
dynamic force P(ij, the equilibrium criterion (e.g., Chopra 1981 or Ebejing 1992)
dictates that

jyt) + ~(t) + L(t) = P(t) (1)

where

$(t) = inertial force

&(fl = damping force

f~~ = elastic resisting force

P(O = externally applied dynamic force

The inertia, damping, and elastic forces are related to the response quantities of
the SDOF system through the following expressions:

J(t) = mi(t) , ~(t) = ci(t) , and jJt) = kx(~) (2)

where

m = mass of the SDOF system

i(t) = relative acceleration of the mass

c = darnping coefficient of the SDOF system

x(t)= relative velocity of the mass

Chapter 2 Six Numerical Step-by-Step Procedures 7



FIXED BASE
+

I

““””w’
Damped SDOF response to b. Damped SDOF response to
external force P(t) ground acceleration x ground (t)

Figure 1. Dynamic response of two damped SDOF systems (Ebeling 1992)

k = stiffness of the SDOF system

x(t) = relative displacement of the mass

Figure 3 shows that inertial forw~ acts opposite to the acceleration of mass mat
time t.

Substituting the expressions given in Equation 2 into Equation 1 results in the
equation of motion for an SDOF system:

rnx(t) + Ci(t) + kx(t) = p(t) (3)

For earthquake analyses, the dynamic loading is represented by

P(r) = -m-i ground(’) (4)
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k.-
Lufk(t) –--––– ,
C
g

c1
z +k ~

z In
co I

x
x(t)

k-
fc(t) ------

+C ;

I

i
i(t)

}

}

ak’; -1
I I

c MASS, m ;+ P(t)

I
-)

FIXED BASE

X Foress = my(t)

>~+!+
~ DIRECTION OF

ACCELERATION
OF MASS m
AT TiMEt

my(t) + c~(t) + kx(t) = P(t)

Figure 2. Forces acting on linear SDOF system at time t, external force P(t) applied (Ebeling 1992)

where ~d (t) is the ground acceleration applied to the base of the SDOF system,
and thus the equation of motion becomes

mi(t) + Cx(t) + kx(t) = %?Zxpmd(f) (5)

Figure 4 depicts these equivalent dynamic SDOF system problems. In alternate
form, the equation of motion maybe written

i(t) + 2pox(t) + u%(t) = -iwmd(t)

where
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l-lx(t)

=LI ‘
k

I
-1

c LASS, m + p(t)

I 1

-\

DIRECTION OF
ACCELERATION
OF MASS m
AT TIME t

FIXED BASE

fi (t)+ f~(t) + f~(t) = P(t)

where the inertial force fi is given by:

f, (t)= mY(t)

Figure 3. Inertial force acting opposite to the acceleration of mass m at time t, external force P(t)
applied (Ebeling 1992)

(3 = darnping ratio= c/(2mti)

0 = circular frequency= m

c = 2mu~

and

(7)

In earthquake analyses, parameters of interest are relative displacement, rela-
tive veloeity, and total acceleration. The total acceleration, ~.l (t), is simply the
sum of the relative acceleration plus the ground acceleration

10

(8)
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—— MASS,m ~
P(t)= -mYgrwti(t)

~ Yflm (f) FIXED BASE

GROUNDACCELERA770N

““” W’ime

STEP1, SOLVE

mY(t)+ci(t) +kx(t)= -rnYgfOund(t) .

STEP2, SOLVE

. .
$oa (t) = ~(t) + xgro”nd (t)

Figure 4. Equivalent dynamic SDOF system problems (Ebeling 1992)

For computer analyses, the discretized form of these equations is needed and
may be represented by the following notation:

xi= X(ti) , ii= i(t), xi = i(t), iWu~ i = xWOm~(t) , and itOtil; = 2tOti1(tJ (9)

where

ti=i At, At=ti+l-ti
(lo)

and i = integer.

2.2 Newmark ~ Method

The Nemrk ~ method is based on the following equations (e.g., Chopra
1995):

Xi+l = xi + [(1 - y) At]xi + (y At)xi+l (11)

and
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Xi+l = xi + (Af)ii + [(0.5 -(l) At2]xi + ((3 At2)ii+l (12)

where the parameters’ ~ and y define the variation of response acceleration over
the time-step and control the stability and accuracy of the method. Typically, y is

set equal to 1/2, which corresponds to zero artificial damping, and ~ is set to a
value between 1/6 and 1/4. In the analyses performed in this report y = 1/2 and
~ = 1/6 were used, which corresponds to a linear variation of response accelera-
tion over the time-step (i.e., the linear acceleration method). The original 1959
version of the Newmark-~ family of numerical methods required iteration to
implement Equations 11 and 12. However, a modification can be made to avoid
iterations. This modified formulation is described in this section.

Equations 14 and 15 result from using the following definitions:

Axi=xi+l -xi, Aiizxi+l -xi,

A.fisxi+l -xi, and APiz Pi+l -Pi

into which Equations 11 and 12 are substituted.

&ii = Atxi + yAtAii

Axi = Atxi +-
At2 ..
—Xi +- (3At2Ai

2 i

Solving Equation 15 for AX

and then substituting into the last term of Equation 14 gives

()A-ii=~Aulxi+At l-~ x
f3At ‘ ~ 2p i

(13)

(14)

(15)

(16)

(17)

The incremental equation of motion (Equation 18) can be derived from Equa-

tion 3 and Equation 13:

mtii + ctii + kAxi = APi (18)

‘ Note that in Equation 12 and all subsequent equations in this section, the variable (3describes
how the acceleration response of the SDOF system varies over the time-step and does not refer to
the damping ratio, represented by (3in the other sections of this report.
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Substituting Equations 16 and 17 into the incremental equation of motion gives

[
~ -+Axi=AP,+(&.+;c)x,k+c y +m

‘[*m+A’(Hclx’
Equation 19 can be rewritten as

hlxi = AFF

where F is referred to as the “effkctive” stiffitess

(19)

(20)

(21)

and A~is referred to as the “effkctive” incremental force

AFF= APi+ (l+’m+H’’+[*m+At($-’)clxi’22)
Accordingly, the incremental change in displacement&i from tito ti+lmaybe

determined by rearranging Equation 20 and from knowledge of the veloci~ and
acceleration at ti

—

. hi=: (23)

Once Axi is determined, the incremental change in velocity &ti and acceleration
A.ii from tito ti+lmaybe computed using Equations 17 and 16, respectively.
Rearranging Equation 13 and substituting in the values for Axi and Axi, the
response velocity and acceleration at ~+1can be established.

- xi,1 =xi+Aii and Xi+l=Xi+Afi (24)

There are different types of numerical methods in the Newmark (3family

depending on the values assigned to ~ and y (Hughes and Belytshko 1983; Hughes
1987; Subbaraj and Dokainish 1989b; and Chopra 1995). When the constant ~ is
set equal to 1/2 and the constant y is set equal to 1/6, this particular variation of

Chapter 2 Six Numerical Step-by-Step Procedures 13



the Newmark ~ family of numerical methods is referred to as the linear accelera-
tion method. The linear acceleration method is used in the numerical studies to be
reported on in subsequent chapters.

2.3 Wilson 6 Method

Although the Newmark ~ method is versatile and accurate, when used with ~

and y values that correspond to the linear acceleration method, the method is only
conditionally stable, i.e., a time-step At shorter than some stability limit must be
used to ensure that the solutions are bounded] (e.g., Paz 1991 or Chopra 1995).
(This potential for instability is inherent in the linear acceleration method and not

an artifact of the Newmark ~ method’s formulation.) However, an uncondition-
ally stable form of the linear acceleration method is the Wilson e method; for
Oz 1.37, the solution is bounded regardless of the size of the time-step. The modi-

fication that Wilson introduced is based on the assumption that the response accel-
eration varies linearly over an extended time interval from tto t + t3At, where
0> 1.(). Note that for (3= 1.(), the Wilson 6 method is the same as the Newmark

~ method when ~ = 1/6 and y = 1/2.

Writing the equilibrium criteria for an SDOF system at ti and ti + L%4t,Equa-

tion 3 becomes

~(tj) +&(tj) + Jf(tj)= ‘(tj) (25)

and

~.(ti+(3At) + &(ti +OAt) + fk(t, +OAt) = P(ti + OAt)

Subtracting Equation 25 from Equation 26 gives

A~+A&+Afk=AP

where

(26)

(27)

Al = J(ti +(3At) - ~(ti) , etc. (28)

‘ The stability limit for the linear acceleration method is At < At-, with At- = 0.55 l(TO).
For the analyses of SDOF systems performed in this report, stability requirements are easily
satisfied as will be demonstrated in Chapter 3. However, for the higher modes of vibration in
MDOF systems or high-tkequency SDOF systems, stability may be an issue.
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Aeeordingly, the extended incremental form of Equation 29 maybe written as

&i = x(ti+OAt) - X(ti) , etc (30)

and the extended incremental

m~i + Cki + k~i =

form of the equation of motion becomes

hi (31)

Assuming that the response acceleration varies linearly over an extended time
interval from t to t + CIAt,

&

i(t) = ii + ~(t-t,) for tis t< ti+OAt

the response veloeity and displacement are given by:

1 hi
z ~(t - ‘i)2i(t) = ii + ii(t- ti) + —

and

: :;(’-’J’X(t)=xi +ii(t - ti) ++xi(t - ti)z +——

(32)

(33)

(34)

Evaluating the response veloeity (i.e., Equation 33) at tiand ti + OAt results in

i(ti)= xi (35)

and

x(ti+ OAt) = xi + xiOAt + ;&, (36)

Chapter 2 Six Numerical Step-by-Step Procedures 15



The extended incremental response velocity may be obtained by subtracting
Equation 35 from Equation 36:

&ii = xiOAt + + &iiOAt (37)

In a similar fashion, the extended incremental response displacement is determined
to be

&x= xiOAt + :ii(8At)2 + $fi(6At)2 (38)

Solving Equation 38 for the extended incremental response acceleration,

- ~i= 6 &i- 6—--xi - 3xi (39)
(0At)2 (O At)

and then substituting this expression into the last term of Equation 37 gives

&i=L Axi - 3ii - !WXi
0 At 2

Substituting Equations 39 and 40 into the extended incremental equation of
motion (i.e., Equation 31) gives

(k+~m+~
(3At 0 At )Ciixi=tii

‘m(~’’+3*’)+c(3’’+~)’)
Equation 41 can be rewritten as

F&ci = q

where ~ is again referred to as the “effective” stifiess but defined as

(40)

(41)

(42)
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~=k+~rn+~c
0 At 0 At

(43)

and ~–i is again referred to as the “effective” incremental force but defined as

ti~=b, +m

(

6
—xi + 3xi

)[

0 At .

0 At
+ c 3xi + —xi

2 )
(44)

Accordingly, the incremental change in displacement Ax, from t,to t, + OAt may

be determined by rearranging Equation 42 and from knowledge of the velocity and
acceleration at ti.

A—

. &i=!j
ki

(45)

Once the extended incremental change in displacement is known, Equation 39
may be used to compute the extended incremental change in acceleration. The
incremental change in acceleration is related to the extended incremental change in

aeederation through Equation 46:

(46)

The remaining response quantities of interest maybe computed by the following

expressions:

Aii = xiAt + :&iAt (47)

Axi=xi At + ~fiAt2+~&’At2
61

xi+~ =xi+ Axi

Xi+l =ii+Aii

and

(
1 Pi+l - Cxi+l - kxi+l)Xi+l = —
m

(48)

(49)

(50)

(51)
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2.4 Central Difference Method

The Central Difference Method is based on the finite difference approximation

of the time derivatives of displacement, i.e., velocity and acceleration (e.g., Chopra
1995). The central difference expressions for velocity and acceleration at time ti
are:

xi .1 – xi _l

xi =
2 At

and (52)

xi., - 2xi + Xi.l
xi =

At 2

where at ti = O,the initial response quantities XOand X. are assumed knownl and x.,
is given by

At2 ..
X-I = Xo - Atxo + —X.

2
(53)

When the expressions in Equation 52 are substituted in Equation 3, the discretized
equation of motion maybe written:

xi ,1 – 2xi + xi_, Xi+l - xi-~
m +C

At 2 2 At

or alternately,

+ kxi = Pi

[$+dxi+f=pi”k=dxi-dk-axi

(54)

(55)

As with the formulations of the Newmark ~ and Wilson 0 methods, the equa-

tion of motion can be represented in an analogous form to Hooke’s law:

(56)

‘ The initial value for relative acceleration (xO)may be determined by substituting the known
values of XOand ~ into tie equation of motion.
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where ~, again the “effective” stiflhess, is written as

and pi, again the “effective” force, is written as

c=pi-[$-dxi-dk-axi
Solving Equation 56 for relative displacement,

F.
- X,+*= -g

k

(57)

(58)

(59)

Because the Central Difference Method is based on the finite difference

approximation of the time derivatives of displacement the determination of rela-
tive velocity and acceleration lags the determination of relative displacement by At
(i.e., Xfil is needed to compute ii ~d ~). However, once ~i+l is kIIOWII,~ and ii
may be computed using the expressions in Equation 52:

xi+~– xi_~ xi+~- 2xi + xi.l
~i = and fi =

2 At At 2
(52 his)

2.5 Duhamel’s Integral

Duhamel’s integral method, solved in a piecewise exact fmhion, idealizes the

forcing fi.mction as a succession of shortduration impulses, with each short-
duration impulse being followed by a free vibration response (e.g., Paz 1985;
Ebeling 1992; or Clough and Penzien 1993). Superposition is used to combine
each of the shortduration impulse/fi-cs vibration responses with the total response
for the structural model. For a continuous forcing fi.mction, P(t) is divided into a

series of pulses of duration d~. The change in velocity of the SDOF system due to
the impulsive load may be determined from Newton’s law of motion:

(60)

or
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~ = P(T)A
(61)

m

where ~(~) dr is the impulse, and C&is the incremental velocity. This incremental
velocity may be considered to be an initial velocity of the SDOF system at time ~.

The solution to the equation of motion for free vibration is

[

i. +xop@
x(t) = e ‘P”rxocos(cdDt) + sin ((J)Dl’)

‘D 1

where

(62)

(63)

Substituting Equation 61 for ~ in the second term of Equation 62 and assuming
XO= O results in

The total relative displacement can be determined by summin g the differential

responses, given by Equation 64, over the entire loading interval:

Using the trigonometric identity:

Sino(t-w) = sinutcoscl)’r – Cosat sin (d-r

Equation 65 maybe written

~ -put
x(t) = —

m tiD

where

AD(t) sin 6)Dt - BD(I ) Cos (DDt]

(64)

(65)

(66)

(67)
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AD(t) = j P(T)epo’ C(JS (I)D ‘r d~
o

and (68)
t

BD(t) =~ P(T) e @’ sin ti~-r d~
o

The expressions in Equation 68 can be solved by several techniques. For this

study, the loading function ~(~) is assumed to be piecewise linear and an exact
solution formulated.

(69)

APi = P(ti) - P(t,.l) (70)

When Equation 69 is substituted into the expressions of Equation 68 and the inter-
mediate variables 11, lZ, 13, and Iq given in Equation 71 are used, Equation 72
represents an exact solution.

fi

J I 0W%J’;+(PJ+4’;f’!13= ~e@sincoD~d~= ~-

ti.,
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where 1( and l; are the integrals for 11and lZ before their evaluation at the limits.
By introducing the following relationships

(72)

the relative displacement, velocity, and acceleration may be determined using
Equations 73,74, and 75, respectively.

-p@t,

‘[A~(ti) ‘k ‘~tj - ‘~(tj) ‘s ‘~tj]Xi=e
m OD

-put,
~i=c { [‘DBD(‘j) - ~@AD(ti)]sin‘D ‘j

m mD

ii= ~(Pi - Cxi - hi)
m

(73)

(74)

(75) -

2.6 Piecewise Exact Method

The Piecewise Exact Method is similar to the way Duhamel’s integral was

solved in the previous section: the forcing fimction is assumed to vary linearly in a
piecewise fiishion and based on this assumption, an exact solution is determined
(Nigam and Jennings 1968 and summarized in Appendix A of Gupta 1992).
However, the Piecewise Exact Method is a direct formulation and does not require
the loading to be divided into a series of impulses, as was done in the formulation
of Duhamel’s integral.

Assuming the dynamic loading vanes in a piecewise linear fashion:

AP.
P(t) = ZJ(ti) + ~(t - ti) for ti s t s ti+, (76)
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where

APi = Pi+l - P, (77)

The relative displacement and velocity may be determined by

Xi+l = Axi + Bxwomdi

where

{}

xi {1Pi
xl = Ywudi = -J-

ii m Pi+~

and

A=
all a12

1 B=

[% a22 j

(78)

(79)

(80)

The elements of the matrices A and B are given by the expressions in Equations 81

and 82, respectively:

[

, -~uA, @
all = sin CODAt + (X)So~ At

‘D 1

“2 ~ -~mAt

a21 = – Sin (J.)DAt
‘D

[

@p
a22 =

~ -PIDAf ~5 ~D& – — sin WDAt
‘D 1

(81)

and
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(82)

Once the relative displacement and velocity have been determined, the relative
acceleration may be computed by

(83)

2.7  4  Order Runge-Kutta Methodth

In the application of the 4  Order Runge-Kutta method, the equation ofth

motion is first reduced to two first-order differential equations (Thomson 1993). 
Writing the equation of motion as

(84)



this seeond-order differential equation maybe written as two first-order equations:

x(t) = y(t)
(85)

j(t) = F(x,y, t)

Both xi+, and y,+, can be expressed in terms of the Taylor series:

X(fi+l) = X(ti) +HA’‘[++ ‘

Y(tj+l) = Y(tj) + MiA’+[4ti$‘

(86)

Ignoring the higher order derivatives, and replacing the first derivative by an
“average” slope, the expressions in Equation 86 maybe written:

()x(ti+l) = X(~i) + ~ At
avg

()dy
Y(t,+l) = Y(tj) + ~ ‘t

avg

where, if Simpson’s rule were used, the “average” slope would be defined as

(%)aw=+%)f,++’(%),,+hn+(%),,+h]

(87)

(88)

In the Runge-Kutta formulation, the “average” slope is very similar to that of

the Simpson’s rule, exeept that the center term of Equation 88 is split into two
terms and four values oft, x, y, and Fare computed for each point i as follows:

t x y=x Y =x
Tl = ‘, x, = xi Y, =yi F, = F’(T1~l,YJ

TZ=’, +M2 x~=x, +Y, h/2 Yz=y, +Fi h/2 F1 = F(TJZ,Y2)

TJ=ti+M? x3=xi+Y2hf2 YJ=y, +F1hL2 F~ = F(TqJq,YJ

Td=ti+h Xq=x, +YJh Y4=yi+Fsh F, = ~T4J4,Y4)
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These quantities are then used in the following recurrence equations:

xi+, = ‘j + +(Y1‘2 Y*+2Y3+Y4)

(89)

X?i+l= J“i+l = .Yi + ~(FI ‘2F2 +z~3 ‘F4)

where it is recognized that the four values of Ydivided by 6 represent an “aver-
age” slope a!r/dt and the four values of F divided by 6 represent an “average”
slope dy/dt. Once the values of the expressions in Equation 89 are determined, the
relative acceleration at time ti+lmaybe computed:

(90)
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3 Stability of Numerical
Integration and Numerical
Differentiation Methods

3.0 Introduction

The stability criteria for the three numerical integration methods and for the
numerical differentiation method used in the step-by-step response analysis of the
SDOF systems analyzed in this study are given in this chapter. Recall that the
numerical integration methods included in this study are (a) the linear acceleration
method of the Newmark (3ftily of numerical methods, (b) the Wilson 6 method,

and (c) the 4* Order Runge-Kutta method. The numerical differentiation method

used is the Central Difference Method. The stability criterion for each of these
four algorithms is established by the values assigned to the constants that are used
in the algorithm and the terms associated with the structural model.

The stability condition requirements for numerical methods are categorized as
either unconditional or conditional. A numerical method is uncxmditionally stable
if the numerical solution for any initial value problem does not artificially grow

without bound for any time-step At, especially if the time-step is large (Bathe and
Wilson 1976; Bathe 1982; Hughes and Belytshko 1983; Hughes 1987; and
Chopra 1995). The method is conditionally stable if the previous statement is true
only for those cases ih which the time-step At is less than some critical time-step
Atcritic.fi Figure 5 shows the attributes of a stable response, computed using At <
Atcritial, and the attributes of a unstable response, computed using At > AtCtitic.l,for
the same undamped SDOF system in free vibration.
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k I
hSS, m ~

I I
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m~(t)+kx(t)=O

INITIAL CONDITIONS: X(t=o)= X..
i(t=o) = X.

.
EXACT SOLUTION: x. X. cos (Dt + ~ sin @t

-1k
where: (D =

-iii

PuE-.l

~. Stable free vibration response with a smaller time-step than the critical

time-step

time

I. Unstable free vibration response due to a larger time-step than the
critical time-step

Figure 5. Example of response for an undamped SDOF system in free
vibration (Ebeling 1992)
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3.1 Stability Criteria for Two Implicit Numerical
Integration Methods

The linear acceleration method of the Newmark ~ fiwnily of numerical methods

is conditionally stable. The critical time-step is defined as

Atcri,ical = ~
lT

(91)

~nm”

and recall that T. equals the natural (undamped) period of the SDOF system
(Hughes and Belytshko 1983; Hughes 1987; Subbaraj and Dokainish 1989b; and
Chopra 1995). Withy equal to 1/2 and ~ equal to 1/6 for the linear acceleration
meth~ AtCritiC.lbecomes

Atc,itiC~, = 0.551 TO

Thus, the stability criterion for a SDOF system dictates that

(92)

(93)

Equation 92 indicates that when the linear acceleration method is applied to the
response analysis of SDOF systems for either free vibration or forced vibration

analysis, the analysis requires two time-steps per natural vibration period of the
stxucture to satisfi stability criteria. For the case of Toequal to 0.5 see, At,ritical
becomes 0.276 see, and with TOequal to 0.25 SW, Attiti~ reduces to 0.138 sec.

Since all SDOF systems used in this study are assigned Toequal to 0.5 sec or
0.25 sec and are subjected to ground motion with At set equal to either 0.02,0.01,
or 0.005 see, it is concluded that the numerical computations using the linear
acceleration method are stable. The results of these forced vibration analyses will
be discussed in Chapter 4.

The Wilson 0 method is unconditionally stable when the value assigned to the

constant 6 is greater than 1.366. A value of 0 equal to 1.38 is used in this study.
Thus, no restraints (such as a At~tic.I value) are placed on the time-step At used in
the analyses from the viewpoint of numerical stability considerations.
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3.2 Stability Criteria for an Explicit Numerical
Integration Method

The 4* Order Runge-Kutta method is an unconditionally stable explicit numer-

ical integration method (Thomson 1993 or Subbaraj and Dokainish 1989b).
Therefore, no restraints (such as a AtCtitiC.lvalue) are placed on time-step At used
in the analyses from the viewpoint of numerical stability considerations.

3.3 Stability Criteria for a Numerical Differentiation
Method

The Central Difference Method is a conditionally stable explicit numerical dif-

ferentiation method. The critical time-step is defined as

Atcri,ical = ~ To
n

(94)

(Bathe and Wilson 1976; Bathe 1982; Hughes and Belytshko 1983; Hughes 1987;

Subbaraj and Dokainish 1989b; Clough and Penzien 1993; and Chopra 1995).
Equation 94 indicates that when the Central Difference Method is applied to the
response analysis of SDOF systems for either fi-ee vibration or forced vibration

analysis, the analysis requires three time-steps per natural vibration period of the
structure to satis& stability criteria. For the case of TOequal to 0.5 see, AtCtitiC.l
becomes 0.159 see, and with TOequal to 0.25 see, AtcritiCalreduces to 0.08 sec.
Since the SDOF systems used in this study (with TOequal to 0.5 sec or 0.25 see)
are subjected to ground motion with At set equal to either 0.02, 0.01, or 0.005 see,
it is concluded that the numerical computations using the Central Difference
Method are stable.

3.3.1 MDOF systems

Stability conditions must be satisfied for each mode in the MDOF system
model, even if the response in the higher modes is insignificant (Hughes 1987,
page 493; or Chopra 1995, page 575). Accordingly, stability criteria, expressed
in terms of the limiting time-step Atm.tiCdzfor conditionally stable algorithms, are
more restrictive for MDOF systems than for SDOF systems. Hughes (1987,
pages 540-542) shows a numerical exercise to establish the time-step At value to
be used in a “transient analysis of an undamped multidegree-of-freedom structure
.. for which engineering insight reveals that the response will be primarily in the

first six modes. Engineering accuracy dictates that relative period error and
amplitude decay (per cycle) be no more than 5 percent for any of the first six
modes.” (A discussion of the issues related to the accuracy of the numerical step-
by-step procedures is postponed until Chapter 4.) However, this example shows
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that the time-step needed to satis~ the stability requirement of the Central Differ-

ence Method is so small that there is no need to worry about accuracy criteria.
This is because the maximum time-step is computed using Equation 94 with TO
replaced by the minimum period (i.e., the maximum frequency) of either the modes
for the MDOF model or the individual elements modeling the structure (depending

on the formulation used to solve the equation of motion of the MDOF system
model). The maximum time-step allowed for several unconditionally stable,
numerical step-by-step procedures that may be used for the response analysis are

also computed in this exercise. The results of Hughes’ example highlights the fact
that unconditionally stable algorithms need be concerned only with the issue of
accuracy, and a significantly larger time-step At maybe used in the MDOF

system response analysis being considered, compared to AtCtitic.zfor the Central
Difference Method. Lastly, Chopra (1995, page 170) observes that in the analysis
of semidiscrete MDOF system models it is of-kmnecessa~ to use unconditionally
stable methods. Hughes (1987, page 536) notes that the use of unconditionally
stable methods is particularly important in complicated structural models

containing slender members exhibiting bending efkcts.

3.4 Conclusions

In summary, the following conclusions are made regarding the stability require-
ments of the numerical methods used in this study:

a. The Wilson 0 method with b equal to 1.38 and the 4ti Order Runge-Kutta
method are unconditionally stable with no requirements made on the tirne-

step At used in the analyses.

b. The linear acceleration method, of the Newmark ~ fiunily, and the Central
Difference Method are conditionally stable. However, since the SDOF

systems used in this research are subjected to ground motion with At set
equal to either 0.02,0.01, or 0.005 see, it is concluded that the computa-
tions using these two numerical methods are stable.

Additionally, the following observation is made: in most earthquake
engineering/dynamic structural response analyses, a time-step At equal to either
0.02, 0.01, or 0.005 sec is commonly used to define the ground motion accelera-

tion time-history. In general, stability will not be an issue for the computed results
when either the linear acceleration method or the Central Difference Method is
used for SDOF systems with Toranging fi-om 0.25 to 0.5 sec. The time-step At
used to accurately define the ground motion will be much smaller than the AtCtitical
value for either of these numerical methods. The accuracy of six numerical step-
by-step procedures will be discussed in detail in Chapter 4.
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4 Accuracy of Six Numerical
Step-by-Step Procedures of
Analysis of the Equation of
Motion for SDOF Systems

4.0 Introduction

In general, the accuracy of a numerical algorithm is associated with the rate of

convergence of the computed response with the exact response as At + O
(Hughes 1987). The six algorithms included in this study are the Newmark ~
method (with values of constants y and ~ corresponding to the linear acceleration
method), the Wilson (3meth~ the Central Difference Method, the 4fi Order
Runge-Kutta meth~ Duhamel’s integral solved in a piecewise exact l%hio~ and

the Piecewise Exact Method applied directly. Specific details regarding the equa-
tions used in each of the six numerical step-by-step procedures are given in
Chapter 2.

Much of the current guiahnce for selecting the time-step At used in computing
the dynamic response of SDOF and MDOF models to ground motion is based on
studies of the accuracy of numerical methods for computing~ree vibration
response of undamped SDOF systems. The information from the free vibration
studies is often combined with usefi.d but qualitative reference to the fi-equency
characteristics of the forcing fimction. The time-step At criterion is often
expressed as a fiction of the natural (undamped) period of the SDOF system for
a specified level of accuracy. Section 4.1 gives a brief review of published numer-
ical assessments of the accuracy of several numerical algorithms for different

time-step At values used to compute the free vibration response of undamped
SDOF models. Current guidance on the factors to be considered when choosing
the value of At to be used in response analysis of structures to earthquake shaking
is also included.

Using abmped SDOF system models with natural periods assigned based on
consideration of the important modal periods of hydraulic structures, an evaluation
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is made in this study of the accuracy of the computed response values solved for at
regular time increments during ground motion. Recall from Section 2.1 that a
ground acceleration applied at the base of an SDOF system is equivalent to a
fixed-base SDOF system with the forcing flmction applied directly to the mass.

Section 4.2 summarizes the results from an extensive series of numerical computa-
tions used to evaluate the accuracy of the six numerical step-by-step procedures
used in this study. Time-step At values of 0.02, 0.01, and 0.005 sec are used in
the response analysis of SDOF systems subjected to base accelerations with differ-
ent frequency characteristics. The dynamic response for each damped SDOF
structural model used in this study (~ = 0.05) is characterized by the computed
response time-histories of accelerations, velocities, and displacements. These
results, combined with computations made using closed form solutions, allow for
the development of quantitative guidance as to how the accuracy of the six numer-
ical step-by-step procedures is affkcted by both the time-step At and the fre-
quency characteristics of the ground motion.

4.1 Error in Free Vibration Response of SDOF
Systems

The accuracy of a numerical step-by-step procedure is usually characterized

using the computed results from free w“brationresponse analyses of undamped
SDOF systems compared with the results from a closed form (exact) solution to
the equation of motion. This section briefly reviews select results from a com-
monly cited numerical assessment of the accuracy of numerical algorithms for

different time-step At values used to compute the dynamic response of SDOF
structural models in free vibration. The figures used to quantifj the accuracy of
numerical step-by-step procedures and the application example cited are taken

from Hughes (1987).

Error is inherent in any numerical solution of the equation of motion

(Chopra 1995, page 170). A common method used to gain insight into the magni-
tude of error for a numerical step-by-step procedure is to quanti$ the difference in
computed displacements with the exact displacements for an undamped SDOF
system in free vibration. The undamped SDOF system is set in motion by an
initial displacement XOand an initial velocity iO at time t = Osec. The exact

solution for displacement x of the undamped SDOF system with time tfor this
boundary value problem is given in Figure 5. This equation for x is obtained using
standard solution procedures for linear differential equations, such as the method
of undetermined coefficients (e.g., Section 2.12 in Kreyszig 1972). The response
described by this equation and shown in Figure 5a is cyclic with a constant
maximum amplitude

(95)
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and constant circular frequency u ( (tim)ln radian). Recall from basic structural
dynamics that an undamped SDOF system responds at its natural (undamped)
period TO,equal to 2Tc/cosec (Ebeling 1992). Thus the response is said to be
periodic with each complete response cycle occurring over a constant interval in
time equal to TOsec. These attributes of a periodic response and the same maxi-
mum displacement amplitude in each cycle facilitate the assessment of the error in

the displacements computed using a numerical step-by-step procedure of analysis.

Figure 6 (Hughes 1987)s ummarizes the results of error assessments made
using several different numerical step-by-step procedures to solve for the dis-
placement x of undamped SDOF systems in free vibration for a wide range in

time-step At values. The abscissa of Figures 6a and 6b is the ratio of At divided
by TO,the natural (undamped) period of the SDOF system. Two definitions of
error are possible for the free vibration problem: (a) amplitude decay, designated
as AD, and (b) period elongatio~ designated as PE. These two types of errors are
shown in the idealized schematic in the center, upper diagram in Figure 6 for one
complete cycle of displacement x. Since the SDOF system is undamped, any

amplitude decay AD in displacement x (per cycle) computed using a numerical
step-by-step procedure will be a measure of the error in computed response. This
error measurement is sometimes reported as “algorithmic damping” since the
actual response for the SDOF system is undamped with no amplitude decay per
cycle. Amplitude decay is converted to algorithmic darnping using the equation
given in the center, upper schematic. The second type of error possible is referred
to as period elongation and measures the extension in the time increment it takes to
complete each cycle of harmonic response.

The data in Figure 6 show that for the free vibration problem of an SDOF sys-

tem with a constant natural period TO,the magnitude of one or both error meas-
urements usually increases with the time-step At. (Refer to Hughes (1987,
Section 9.3) for details regarding the numerical step-by-step procedures identified
in this figure.) Conversely, Figure 6 shows that for a specified time-step At, the

magnitude of one or both error measurements is greater for short-period SDOF
systems than for long-period SDOF systems. In summary, this figure shows the
errors associated with a given numerical procedure to be a fimction of (a) the time-
step At used in the analysis and (b) the natural (undamped) period TO. Similar
error plots are given in Chopra (1995, Figure 5.5.2 on page 173) and in Bathe and
Wilson (1976, Figure 9.3 on page 357).

4.1.1 MDOF systems

The data given in Figure 6 may also be used to establish the largest time-step
At for a specified level of accuracy in response analysis of semidiscrete MDOF
system models. Hughes (1987, pages 540-542) gives a numerical exercise to
establish the time-step At value to be used in a “transient analysis of an undamped
multidegree-of-fi-eedom structure ... for which engineering insight reveals that the
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response will be primarily in the first six modes. Engineering accuracy dictates

that relative period error and amplitude decay (per cycle) be no more than 5 per-
cent for any of the first six modes. ” The corresponding value of algorithmic

damping ratio is computed to be 0.05/2n, equal to 0.008. This exercise uses the
Figure 6 data to establish the At values to be used in each of the numerical step-

by-step procedures identified in this figure. From modal analysis of the MDOF
system, it is established that the natural period for the sixth mode, Tb, is equal to
one-tenth (1/1 O) the natural period of the first mode, To (thus, To= 10TG).
Hughes’ exercise shows that when unconditionally stable algorithms, such as the
Wilson 6 method, are used to compute the response of MDOF system models, the
5 percent error criterion for amplitude decay AD and period elongation PE

establishes two limiting values for the ratio (At/TJ. For this example, Figure 6
shows that both limiting values of the ratio (At/TJ are equal to 0.08. Note that
because this is an MDOF system problem, the natural period Toin the denominat-
or of the abscissa of Figures 6a and 6b is replaced by Tb,the highest frequency of
engineering significance contributing to system response in this analysis. Thus
the value of the largest time-step At that can be used in the response analysis using
the Wilson 0 method is equal to 0.08T~ (0.008TO). Additionally, if the time-step
criteria for AD and PE differ, the smallest value for the ratio (At/TJ is used to
establish the largest time-step At since the 5 percent maximum error criteria must
be satisfied in terms of both AD and PE.

4.1.2 Current guidance for assigning the time-step At to be used in
earthquake engineering dynamic structural response analysis

Much of the current guidance for selecting the time-step At used in computing

the dynamic response of SDOF and MDOF models to ground motion makes use of
Figure 6 type data fiom~ree vibration response analyses of undamped SDOF
systems. This information is often combined with usefid but qualitative reference
to the frequency characteristics of the forcing fimction. For example, after going
through an exercise of evaluating the accuracy of numerical algorithms, Chopra
(1995, pages 172 and 568) concluded that his Figure 5.5.2 data (comparable to

the Figure 6 data) suggest that a time-step At equal to O.lT~ would give reason-
ably accurate results. (TN is the natural period in seconds of the Nth mode of the
MDOF system model with signzjicant response contribution.) This same guid-
ance is also given by Bathe and Wilson (1976, pages 351-352), Clough and
Penzien (1993, pages 128-129), and Paz (1991, page 155), with the caveat of

when “the loading history is simple.” Chopra (1995, pages 172-173) concludes
his discussion of computational error with the observations that ”... the time step

should be short enough to keep the distortion of the excitation function to a minim-
um. A very fine time step is necessary to describe numerically the highly irregu-
lar earthquake ground acceleration recorded during earthquakes; typically,
At= 0.02 seconds is chosen and this dictates a maximum time step for computing
the response of a structure to earthquake excitation.” Gupta (1992, page 155)
recommends that “the time step used in the response computations is selected as
the smaller of the digitized interval of the earthquake acceleragram or some frac-
tion of the period of free vibration, for example T/l O.”
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In summary, Paz ( 1991, page 155), Gupta ( 1992, page 155), Clough and
Penzien (1993, pages 128-129), and Chopra (1995, pages 172-173) all recognize
that the assignment of time-step At in response analysis to forced vibration should
consider the following factors: (a) the natural period of the structure; (b) the rate
of variation of the loading fimction; and (c) the complexity of the stifiess and
darnping fi,mctions. However, no error summary similar to Figure 6 for the forced
vibration of damped SDOF systems in which ground motion is represented by an
acceleration time-history is given in the books on structural dynamics by Bathe
and Wilson (1976), Hughes (1987), Paz (1991), Gupta (1992), Clough and
Penzien (1993), and Chopra (1995).

4.2 Error in Response of SDOF Systems to Ground
Motion

This section summarizes the results of an assessment of the accuracy of
response of six numerical step-by-step procedures used in computational struc-

tural dynamics. The six algorithms used in this study are representative of the
different types of numerical procedures used to compute the dynamic structural
response to a timedependent loading. The timedependent loading envisioned in

this research is that of the motion of the ground below a discrete structural model

and is expressed in terms of a ground acceleration time-history. The dynamic
structural response for each structural model used in this study is characterized by
the computed response time-histories of accelerations, velocities, and
displacements.

The six algorithms included in this study are the Newmark ~ method (with val-

ues of constants y and ~ corresponding to the linear acceleration method), the Wil-
son O method, the Central Difference Method, the 4* Order Runge-Kutta method,
Duhamel’s integral solved in a piecewise exact fashion, and the PieceWise Exact
Method applied directly. Specific details regarding the equations used in each of
these numerical step-by-step procedures are given in Chapter 2. Recall from Sec-
tion 2.1 that a ground acceleration applied at the base of a SDOF system is equiv-
alent to a fixed-base SDOF system with the forcing fiction applied directly to the
mass.

These numerical results, combined with computations made using closed form

solutions, allow for the development of quantitative guidance as to how the accu-
racy of the six numerical step-by-step procedures are affected by both the time-
step At and the frequency characteristics of the ground motion.

4.2.1 SDOF systems

All structural models used in this numerical study are linear, SDOF systems
with a damping ratio set equal to 5 percent (~ = 0.05). Two SDOF systems are
used in this numerical study: TO= 0.25 sec (frequency fO= 4 Hz) and TO= 0.5 sec
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~0 = 2 Hz). Recall from structural dynamics that fiequency~ (cycles/see or Hz)
is equal to the inverse of To(e.g., Ebehng 1992). The natural (undamped) periods
and darnping ratio of the SDOF systems used in this numerical study were based
on dynamic response analyses procedures used to model and analyze various types
of hydraulic structures, such as gravity dams, arch darns, gravity lock walls,
U-frame locks, and intake towers. The shortest period (highest frequency) of engi-
neering significance contributing to system response for these hydraulic structures
was also taken into consideration when selecting the range in To values.

4.2.2 Time-step At

The time increments, At, used in this numerical study are 0.02,0.01, and
0.005 sec. These values are typical of the At used in discretizing earthquake

acceleration time-histories recorded in the field on strong motion accelerographs
(e.g., Hudson 1979).

4.2.3 Ground motion

The ground motion forcing fimctions used in this numerical study are single-

fiequency harmonics. The use of a single frequency facilitated the evaluation of
the accuracy of the computed response values solved for at regular time incre-
ments during ground motion. Figure 7 shows the three ground acceleration time-
histories used. All three ground motions contain twenty cycles of sinusoidal

acceleration with peak ground acceleration of 1 g. The three acceleration tixne-
histories are distinguished fi-om one another by the time interval required to com-
plete each cycle of sinusoidal acceleratio~ designated as T~. The values of Tg are
0.05,0.25, and 1.0 sec. Accordingly, the corresponding durations of ground
motion are 1, 5, and 20 see, respectively.

The three ground motions shown in Figure 7, with Tg equal to 0.05,0.25, and
1 see, possess cyclic frequencies&of 20 Hz, 4 Hz and 1 Hz, respectively. These
fi-equencies are often contained within acceleration time-histories that have been
recorded in the field on strong motion accelerographs during numerous earth-
quakes and are often encountered in earthquake engineering dynamic response
analysis of structures. It has also been the experience of the authors to encounter
this range of frequencies in the earthquake engineering dynamic structural
response analysis of hydraulic structures.

4.2.4 Frequency of ground motion relative to frequency of SDOF

systems

Basic structural dynamics demonstrates that the magnitude of the frequencyfi
or, equivalently, period T~,of the forcing fi.mction relative to the magnitude of the
natural fiequency~O, or period TO,of the SDOF system impacts the magnitude of
dynamic structural response. A response spectrum is a convenient plot for
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characterizing these interrelationships (Ebeling 1992). The response spectra
shown in Figure 8, with ~ = 0.05, shows the relationship of the frequency content
for each of the three acceleration time-histories relative to the natural frequency of
the two SDOF systems. The three ground motions used in this study possess fre-
quencies that are larger, equal to, and less than the natural frequency of the two
SDOF systems. Thus, three important combinations for the frequency content of
the ground motion relative to the natural frequency of the SDOF system are
included in this investigation. SDOF system responses, plotted in Figure 8 in
terms of pseudo-acceleration S~ normalized by the peak ground acceleration A.a
of 1 g, demonstrate that the frequency content for the three ground motions shown
in Figure 7 are sufficiently close to the natural frequencies to excite the SDOF
systems and thus induce a dynamic response. (Refer to Table 2 in Ebeling 1992
for the definition of S~ and for additional details regarding response spectra.)

4.2.5 Time-histories of 432 step-by-step response analyses

The dynamic response for each SDOF model used in this study was character-

ized by the computed response time-histories of relative displacements, relative

velocities, relative accelerations, and total accelerations. With three time-steps
(At = 0.02,0.01 and 0.005 SW) three ground motions (T. = 0.05,0.25 and 1 see),

a total of 432 response time-histories were computed for the two damped SDOF
systems using the six numerical step-by-step procedures. Additionally, the exact
response quantities were generated for each SDOF system for each time-step and
each ground motion using the closed form solution given in Appendix A. All cal-
culations were made using two computer programs developed for use in this study.
Each of the computed response time-histories was stored on disc in 432 separate
files. Each file contained up to 4,000 response values (and corresponding time
t values), depending on the time-step At value used in the analysis and the duration

of the ground motion used to excite the damped SDOF system.

4.2.6 Results from 12 of the 432 error studies

In this numerical study, the key variables thought to impact the accuracy of the
results of the six numerical step-by-step procedures were (a) the time-step At,
(b) the frequency content of the ground motion (characterized by T’), (c) the value
of T~relative to the value of TO,and (d) the natural period To of the SDOF system.
The evaluation of the 432 response time-histories started with a comparison with
their corresponding exact solution. These initial 432 comparison plots helped to
identifi which variables contribute to the inaccuracy in computed results and the
extent of their contribution. Only 12 of these 432 comparison figures are included
in this report due to space limitations. However, the time-histories that are
included in this report, and discussed in the following paragraphs, demonstrate
how idorrnation was extracted and used in this extensive numerical study.

Figures 9, 10, and 11 each show the four response time-histories of an SDOF
system with TOequal to 0.25 see and ~ equal to 0.05. These response
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Figure 8. Response spectra of two SDOF systems with 5 percent damping for three harmonic
forcing functions

time-histories were computed using both the Wilson 0 method@ = 1.38 and a
time-step At equal to 0.01 see) and the exact solution (Appendix A). The response
analyses differ among the three figures by the frequency assigned to the ground
motion, with T~set equal to 0.05 sec (20 Hz), 0.25 sec (4 Hz), and 1 see (1 Hz),
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respectively. Visual comparison of the computed results for each response quan-,

tity in the three figures shows a dramatic variation in SDOF response. The rise in
amplitude and frequency of wave form for the plots of relative displacement shows
the most dramatic variation. Recall that these SDOF system responses are all
driven by sinusoidal ground motions with l-g maximum amplitude (Figure 7).
This dramatic variation in response demonstrates the impact that the frequency
content for the ground motion relative to the natural frequency of the SDOF sys-
tem has on the dynamic response. These results also demonstrate the diversity of
the numerical tests being conducted, even though the forcing functions shown in
Figure 7 bear a strong resemblance to one another.

Further visual examination of Figures 9, 10, and 11 shows a larger error in

Figure 9 than in the other two figures. Since the frequency of the ground motion is

varied among the three groups of response analyses shown in Figures 9, 10, and
11, the authors conclude that the frequency content of the ground motion affects

the accuracy of all four response parameters when using the Wilson 6 method. A
tion of the results in Figure 9 shows that the accuracy dif-more detailed examina

fers among the four response quantities. For example, the relative acceleration
response data are more accurate than the relative velocity response data.

Because these results are all computed using forced vibration analyses of

damped SDOF systems, the definitions of numerical errors used in free vibration
response analysis of undamped SDOF systems (and described in Section 4.1) are
not appropriate. A new definition of numerical error in the computed response
data is needed. Recognizing that the results from time-histo~ analysis of linear

structural systems subjected to earthquake excitation are usually concerned with
the extreme values in computed results, an error definition is made accordingly
(Figure 12). The upper plot in this figure is the same relative displacement tirne-
history data shown in Figure 9. ‘I%etime-history of 100 response values (100=
duration of ground motion/At) computed using the Wilson 0 method and the
response values computed using the exact method are searched numerically for
“peaks and valleys.” This is accomplished using a third computer program that

searches through the response time-history data looking for a reverse in sign in a
pair of slopes for three adjacent data points, with the first slope computed using a
pair of response values at times (ti - At) and ti and the next slope computed using
response values at time ti and (ti+ At). The error in the computed response val-

ues, relative displacement in this figure, is then computed for each peak and each
valley in the data. Lastly, only those peaks and valleys with significant amplitude,
say greater than 10 percent of the absolute value of the largest response value, are
recorded. An example error calculation is made for the first “peak” relative dis-
placement response value and identified as such in the insert to the right in Fig-
ure 12. This insert shows that the first peak relative displacement value occurs at
0.06 see, while the first peak computed using the exact solution occurs at
0.064 sec. The difference in time for the two peaks attests to the high fkquency of
the response compared to coarse time-step used in this Wilson 0 method response
analysis (i.e., At= 0.01 see). The computed error is approximately 29 percent.
This error point and 23 others are plotted versus time of occurrence (0.06 see for
the first peak) in the figure located immediately below the relative displacement
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response time-history. This figure shows that the error in peaks and valleys of
relative displacement ranges in value from a low of 24.1 percent to a high of 38.4

percent throughout the duration of shaking. The maximum relative displacement
for the exact solution occurs at 0.042 sec and has a value of-3.225 mm. The
maximum relative displacement computed by the Wilson 0 method occurs at
0.04 sec and has a value of -2.239 mm. This corresponds to a 30.6 percent error

in maximum response computed by the numerical procedure, occurring at the first
“valley” in the response time-history (Figure 12),

4.2.7 Summary of numerical results from all 432 error studies

An error evaluation similar to that described in Section 4.2.6 was made for the

remaining 431 response time-histories. These error evaluations were performed on
all four response variables: relative displacement, relative velocity, relative accel-

eration% and total acceleration. The resulting 432 time-history error plots were
reviewed by the authors. The range in error for all significant peaks and valleys of
a given response parameter throughout the duration of shaking was tabulated,
along with the error in the maximum response parameter value. The results of
these extensive error evaluations are summarized in Tables 1 through 6 for relative
displacement (designated Rel. D), relative velocity (Rel. V), relative acceleration
(Rel. A), and total acceleration (Total A).

The six algorithms are designated in Tables 1 through 6 as follows: DHM for
Duhamel’s integral solved in a piecewise exact fashion; NMK for the Newmark ~
method with values of constants y and ~ corresponding to the linear acceleration

method; PWM for the PieceWise Exact Method applied directly; WIL for the Wil-

son 0 method (6 = 1.38); CDF for the Central Difference Method; and RGK for
the 4ti Order Runge-Kutta method. Each table shares a common value for the
time-step At used in the numerical analyses. The coarsest time-step (At=
0.02 see) is used in the numerical analyses reported in Tables 1 and 2. The inter-
mediate time-step (0.0 1 see) is used in the numerical analyses reported in Tables 3

and 4. The finest time-step (0.005 see) is used in the numerical analyses reported
in Tables 5 and 6. Each of the three ground motions shown in Figure 7 is distin-
guished in the tables by their T~value (i.e. 0.05,0.25, and 1 see).

Table 1 summarizes the errors computed with At equal to 0.02 sec and To

equal to 0.25 sec. The results are presented in three main groups and are distin-
guished by the ground motions used in the analyses. Recall that the frequency of
the ground motion is reflected by the T~value (and that the ground motion fre-
quency~ = I/Tg).

The results given in Table 1 demonstrate that the accuracy of all six numerical
algorithms depends on the frequency content of the ground motion, with all other
variables held constant. The magnitudes of error for all four response parameters
increase as the frequency of the ground motion increases. Using a time-step At
equal to 0.02 sec for an SDOF system with TOequal to 0.25 sec is acceptable for
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rable 1
‘ercentile Errors in Relative Displacement (Rel. D), Relative Velocity (Rel. V),
lelative Acceleration (Rel. A), and Total Acceleration (Total A) for SDOF System of
VO= 0.25 sec and At = 0.02 sec

Error in Maximum Rasponsa

At (Range in Errors for Peak and Valley Values)

;, sec ~ Parameter DHM NMK PWM WIL CDF RGK

1.05 0.4 54 54 54 77 30 54
Rel. D (50 to 79) (52 to 66) (50 to 66) (70t081) (40 to 90) (53 to 65)

61 62 61 64 100 61
Rel. V (58 to 87) (60 to 85) (58 to 86) (22 to 80) (otol 19) (58 to 85)

14 14 17 9 14
Rel. A (3 to 45) (2 to 44) ;24to 45) (15 to 46) (1 to41) (2 to 43)

54 55 54 72 25 55
Total A (52 to 66) (50 to 67) (52 to 66) (38 to 89) (7t091) (50 to 66)

.25 0.08 5.3 2.2 5.3 9.9 1.9 5.4
Rel. D (2.2 to 5.3) (1.3 t05.1) (2.2 to 5.3) (3.8 to 9.9) (0.1 to 2.9) (2.4 to 5.5)

3.9 3.1 3.9 11.1 4.8 4.4
Rel. V (2.2 to 4.3) (1.6 to 4.7) (2.2 to 4.3) (4.5 toll.1) (1 to 4.8) (2.2 to 4.4)

5.1 0.2 2.9 5.6 3.1 5.1
Rel. A (1.9 t05.1) (oto 3.1) (1.9 t05.1) (0.3 to 5.6) (3.1 to 9) (2t05.1)

4.5 2 2.6 10.3 6.3 4.7
Total A (2.1 to 4.6) (1.3 to 4.2) (2.1 to 5) (3.9 to 10.3) (4 to 7.5) (2.2 to 5.1)

.0 0.02 Ret. D o 0 0 0 0 0

Rel. V o 0 0 0 0 0

ReL A o 0 0 0 0 0

Total A o 0 0 0 0 0

ote: DHM = Duhamel’s integral solved in a piecewise exact fashion.
NMK = Newark ~ method.
PWM = Piecewise Exact Method.
WIL = Wilson 6 method.
CDF = Central Difference Method.
RGK = 4* Order Runge-Kutta Method.

long-period ground motion (T’ = 1 see,~~ = 1 Hz). However, for high-frequency
ground motion (T’ = 0.05 see, f~ = 20 Hz) a smaller At is required. The results
given in Table 2 also support this same conclusion. Table 2 differs from Table 1
by the value of Toused, increased from 0.25 sec to 0.5 sec.

Table 3 differs from Table 1 in the value of At used, redueed to 0.01 sec from
0.02 sec. These results show that the reduction in the time-step At to 0.01 sec
remarkably improves the accuracy of all six numerical methods. However, inac-
curacies are still present in the response values for all six procedures for the
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rable 2
~ercentile Errors in Relative Displacement (Rel. D), Relative Velocity (Rel. V),
?elative Acceleration (Rel. A), and Total Acceleration (Total A) for SDOF System of
TO= 0.5 sec and At = 0.02 sec

Error in Maximum Response

r At (Range in Errors for Peak and Valley Values)
s+ <;ec Parameter DHM NMK PWM WIL CDF RGK

).05 0.4 57 57.1 57 77.3 46.5 57.1
Rel. D (53.4 to 68.8) (55.7 to 72.4) (55.5 to 65.4) (74.4 to 84.7) (19.5 to 89.3) (53.5 to 65.3)

73.9 74.3 73.9 55.2 74 73.9
Rel. V (59.1 to 81 .8) (59.4 to 93) (59.2 to 93.5) (2.2 to 104) (45.4 to 130) (59.2 to 93.5)

9.7 9.7 9.7 11 8.3
Rel. A (0.7 to 43)

9.7
(0.7 to 42.9) (0.6 to 43) (1.1 to 44.4) (0.3 to 42.4) (0.6 to 43)

60.8 60.7 60.8 73.4 45.3 60.8
Total A (50.8 to 70.7) (51 .7 to 74.4) (50.8 to 70.7) (60.5 to 91 .6) (16.4 t077.1) (50.8 to 64.8)

).25 0.08 2.5 2.8 2.5 6.4 0.1 2.5
Rel. D (2.1 to 7.7) (0 to 7.0) (2.2 to 7.7) (4.1 to 25.5) (0.1-lo 9.2) (2.1 to 7.4)

2.9 3.5 2.9 7.6 2.2 2.9
Rel. V (2.2 to 4.2) (1.2 to 5.3) (2.2 to 3.7) (3.5 to 10.2) (0.3 to 4.8) (2.2 to 4.2)

1.7 2.1 1.7 3.8 2.2 1.7
Rel. A (0 to 3.5) (O to 3.8) (0 to 3.4) (0.2 to 5) (0.4 to 4.3) (0.2 to 3.5)

2.2 2.4 2.2 5.9 4.4 2.2
Total A (2 to 5.2) (0.6 to 3.7) (2.1 to 5.4) (1.4 to 18.3) (3.4 to 8.3) (2 to 5.4)

.0 0.02 Rel. D o 0 0 0 0 0

Rel. V o 0 0 0 0 0

Rel. A o 0 0 0 0 0

Total A o 0 0 0 0 0

Iote: DHM = Duhamel’s integral solved in a piecewise exact fashion.
NMK = Newark ~ method.
PWM = Piecewise Exact Method.
WIL = Wilson e method.
CDF = Central Difference Method.
RGK = 4* Order Runge-Kutta Method.

high-frequency ground motion (T~ = 0.05 sec,fi = 20 Hz). The results given in
Table 4 also support this conclusion. Table 4 differs from Table 3 by the value of
TOused, increased fi-om 0.25 sec to 0.5 sec.

Table 5 differs from Table 3 in the value of At used, reduced to 0.005 sec from
0.01 sec. These results show that a reduction in the time-step At to 0.005 sec
eliminates all errors for the six numerical methods in all but the high-frequency
ground motion compared with those given in Table 3. Small numerical inaccu-
racies are still present in the results for all six numerical step-by-step procedures
for the high-frequency ground motion (T~= 0.05 sec,& = 20 Hz). The results
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rable 3
‘ercentile Errors in Relative Displacement (Rel. D), Relative Velocity (Rel. V),
?elative Acceleration (Rel. A), and Total Acceleration (Total A) for SDOF System of
To= 0.25 sec and At = 0.01 sec

Error in Maximum Response

At (Range in Errors for Paak and Valley Valuas)

~, sec < Paramatar DHM NMK PWM WIL CDF RGK

1.05 0.2 14.8 14.8 13.5 30.6 7.3 13.5
Rel. D (5.3 to 18) (5 to 20.8) (6.2 to 19.1) (24.1 to 38.4) (7.3 to 21.6) (12.7 to 18.8]

13.7 19.6 19.1 37.5 18.8 19.1
Rel. V (13.6 to 25.8) (14.1 to 27.2) (13.6 to 29.3) (28.4 to 37.5) (1 1.6 to 42.3) (13.7 to 28.5]

6.6 6.65 6.6 9.3 3.5 6.6
Rel. A (3.1 to 7.5) (3.1 to 7.5) (3.1 to 7.5) (o to 9.3) (0.9 to 4.5) (3 to 7.5)

14.7 14.9 14.7 30.2 2.7 14.7
Total A (8 to 22.5) (3.1 to 21.1) (8 to 17.8) (25.3 to 30.9) (2.1 to 33.7) (13.3 to 17.81

.25 0.04 Rel. D o 0 0 0 0 0

Rel. V o 0 0 0 0 0

Rel. A o 0 0 0 0 0

Total A o 0 0 0 0 0

.0 0.01 Rel. D o 0 0 0 0 0

Rel. V o 0 0 0 0 0

Rai. A o 0 0 0 0 0

Total A o 0 0 0 0 0

ote: DHM = Duhamel’s integral solved in a piecewise exact fashion.
NMK = Newark ~ method.
PWM = Piecewise Exact Method.
WIL = Wilson (3 method.
CDF = Central Difference Method.
RGK = 4* Order Runge-Kutta Method.

given in Table 6 also support this same conclusion. Table 6 differs from Table 5

by the value of TOused, increased from 0.25 sec to 0.5 sec.

The results given in Tables 1 through 6 show that of the six numerical step-by-
step procedures, the Wilson (3method is the least accurate and the Central Differ-
ence Method is the most accurate. However, the differences in the accuracy of the
computed results among the six numerieal step-by-step procedures for the SDOF
systems are minor compared to the signifieamx of At and Tg.

The impact of the change in natural period To from 0.25 sec to 0.5 sec for the
damped SDOF systems on the aeeuracy of the six numerical step-by-step proce-
dures is minor. Comparison of the results given in Tables 1 and 2 with T~equal to
0.25 see shows the value of Tg relative to the value of TOhas the most impact on
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‘able 4
‘ercentile Errors in Relative Displacement (Rel. D), Relative Velocity (Rel. V),

Ielative Acceleration (Rel. A), and Total Acceleration (Total A) for SDOF System of
r
0 = 0.5 sec and At = 0.01 sec

Error in Maximum Response

At (Range in Errors for Peak and Valley Values)

~ sec y Parameter DHM NMK PWM WIL CDF RGK

.05 0.2 14.6 14.6 14.6 30.4 11.9 14.6
Rel. D (12.6 to 16.3) (10.6to 16.1) (12.6 to 15.6) (28 to 31 .9) (4.8 to 22.4) (12.6 to 15.61

13.6 13.7 13.6 30.1 13.5 13.6
Rel. V (13.6 to 27.3) (13.5 to 52.6) (13.6 to 37.7) (29.3 to 50.7) (13.3 to 25.5) (13.6 to 52.51

6 6 6 7.3 4.8 6
Rel. A (3.8 to 6) (3.8 to 6) (3.8 to 6) (2.2 to 7.3) (3 to 4.8) (3.8 to 6)

13.4 13.5 13.4 29.6 9.5 13.4
Total A (8.6 to 17.9) (7.3 to 16.3) (8.6 to 15.1) (27.8 to 32.1) (0.7 to 39.2) (8.6 to 17.91

.25 0.04 Rel. D o 0 0 0 0 0

Rel. V o 0 0 0 0 0

Rel. A o 0 0 0 0 0

Total A o 0 0 0 0 0

.0 0.01 Rel. D o 0 0 0 0 0

Rel. V o 0 0 0 0 0

Rel. A o 0 0 0 0 0

Total A o 0 0 0 0 0

ote: DHM = Duhamel’s integral solved in a piecewise exact fashion.
NMK = Newark ~ method.
PWM = Piecewise Exact Method.
WIL = Wilson 6 method.
CDF = Central Difference Method.
RGK = 4* Order Runge-Kutta Method.

accuracy of computed results when T~and TOare close to the same value. How-
ever, its influence is secondary compared to the influence of At and T~.

In summary, for damped (~ = 0.05) SDOF systems, the results presented in

Tables 1 through 6 clearly demonstrate that the accuracy of all six numerieal
step-by-step procedures depends primarily on (a) the value of the time-step At
used in the response analysis and (b) the frequency content contained within the
ground motion. The computed values of relative acceleration are slightly more
accurate than the computed values of relative displacement, relative veloeity, and
total acceleration.
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Table 5
Percentile Errors in Relative Displacement (Rei. D), Relative Velocity (Rel. V),

Relative Acceleration (Rel. A), and Total Acceleration (Total A) for SDOF System of

To = 0.25 sec and At = 0.005 sec

Error in Maximum Response

At (Range in Errors for Peak and Valley Values)

rfl sec < Parameter DHM NMK PWM WIL CDF RGK

).05 0.1 3.6 3.9 3.6 8.8 2 3.6
Rel. D (0.5 to 3.9) (0.3 to 3.9) (0.5 to 3.9) (0.7 to 8.9) (0.3 to 6.5) (0.4 to 3.8)

3.5 3.7 3.5 9.0 3.9 4
Rel. V (3.4to 5.9) (3.5 to 5) (3.4 to 5.9) (8 to 10.6) (3.2 to 5.9) (3.5 to 5.9)

4.7 4.7 4.7 5.7 3.4 4.7
Rel. A (3.5 to 4.8) (3.7 to 5.1) (3.6 to 5) (3.4 to 5.7) (2.2 to 3.6) (3.6 to 5)

4 4.1 4 9.2 3.5 4
Total A (o to 4) (0.7 to 4.1) (O to 6.2) (O to 9.2) (0.7 to 11) (O to 8.9)

).25 0.02 Rel. D o 0 0 0 0 0

Rel. V o 0 0 0 -“o o

Rel. A o 0 0 0 0 0

Total A o 0 0 0 0 0

.0 0.005 Rel. D o 0 0 0 0 0

Rat. V o 0 0 0 0 0

Rel. A o 0 0 0 0 0

Total A o 0 0 0 0 0

Jote: DHM = Duhamel’s integral solved in a piecewise exact fashion.
NMK = Newark ~ method.
PWM = Piecewise Exact Method.
WIL = Wilson 6 method.
CDF = Central Difference Method.
RGK = 4* Order Runge-Kutta Method.

4.2.8 Accuracy of numerical step-by-step procedures as a function of

time-step At and frequency contained within the ground motion

The data contained in Tables I through 6 show that the accuracy of the six
numerical step-by-step procedures depends on the value of the time-step At and
the frequency of the ground motion. This subsection describes two groups of error
plots for each of the four response parameters, given as fictions of the variables
At and Tg. Select data from these tables, specifically, the error corresponding to

the maximum responses, are reordered as a fimction of the ratio of At divided by
Tg, in an attempt to present this information in a more useable form. The first
group, Figures 13 through 16, reports the errors in relative displacement, relative
velocity, relative acceleration, and total acceleration, respectively, for TOequal to
0.25 sec. The second group, Figures 17 through 20, reports the errors in the four
response parameters for TOequal to 0.5 sec.
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rabie 6

~ercentile Errors in Relative Displacement (Rel. D), Relative Velocity (Rel. V),

?elative Acceleration (Rel. A), and Total Acceleration (Total A) for SDOF System of

TO= 0.5 sec and At = 0.005 sec

Error in Maximum Response

At (Range in Errors for Peak and Valley Valuas)

>, sec < Parameter DHM NMK PWM WIL CDF RGK

).05 0.1 3.5 3.5 3.5 8.6 2.8 3.5
Rel. D (1.5 t05) (0.9 to 5.5) (2.5 to 5.1) (7.5 to 9.5) (2.7 to 5.8) (3 to 4.3)

3.4 3.4 3.4 8.5 3.4 3.4
Rel. V (3.4 to 4) (3.4 to 4.1) (3.4 to 4) (8.3 to 9.4) (3.3 to 4.1) (3.4 to 4.1)

4.4 4.4 4.9 3.9 4.4
Rel. A (::: to 4.9) (4.3 to 4.9) (4.3 to 4.9) (4.1 to 5.1) (3.8 to 4.4) (4.3 to 4.9)

3.3 3.3 3.3 8.4 0.1 3.3
Total A (0.8 to 5.6) (0.7 to 5.2) (2.5 to 5.6) (7.5 to 9.1) (0 to 13) (2.6 to 5.6)

1.25 0.02 Rel. D o 0 0 0 0 0

Rel. V o 0 0 0 0- 0

Rel. A o 0 0 0 0 0

Total A o 0 0 0 0 0

.0 0.005 Rel. D o 0 0 0 0 0

Rel. V o 0 0 0 0 0

Rel. A o o’ 0 0 0 0

Total A o 0 0 0 0 0

Iote: DHM = Duhamei’s integral solved in a piecewise exact fashion.
NMK = Newark ~ method.
PWM = Piecewise Exact Method.
WIL = Wilson ~ method.
CDF = Central Difference Method.
RGK = 4ti Order Runge-Kutta Method.

These two groups of data, Figures 13 through 16 and Figures 17 through 20,

demonstrate that the accuracy of the four response parameters computed using all
six numerical step-by-step procedures clearly depends on the ratio of At divided
by T~. Thus, the impact of the two most important parameters on the accuracy of
the computed results can be characterized in terms of a single variable. Addition-
ally, the trends in the data are similar for each pair of companion figures, given the
same response variable is being considered (e.g., for Rel. D in Figures 13 and 17;
Rel. V in Figures 14 and 18; Rel. A in Figures 15 and 19; and Total A in Fig-
ures 16 and 20). These eight figures show that the error in all response parame-
ters increases with increasing values of the ratio At/T~. The error in maximum
responses for the four response parameters ranges in value from a low of 2.8 per-
eent to a high of31.4 pereent with the ratio At/T~ equal to 0.2. However, reducing
the ratio At/Tg from 0.2 to 0.1 reduees the error in maximum response for all four
response parameters to less than 10 pereent.
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4.3 Conclusions

The accuracy of six numerical step-by-step procedures of analysis of the equa-

tion of motion for SDOF system models is discussed in this chapter. Current
guidance for the selection of the time-step At is based on studies of the accuracy

of numerical methods using the computed results from~ree vibration response
analyses of undamped SDOF systems combined, frequently, with useful but
qualitative reference to the frequency characteristics of the forcing fimction. This
time-step At criterion is expressed as a fraction of the natural (undamped) period
of the SDOF system for a specified level of accuracy. The results of the numeri-
cal response calculations made in this study of thejimed vibration response prob-
lem in which a ground acceleration is applied at the base of a damped SDOF

system adds to this body of information.

Using damped SDOF system models with natural periods assigned based on
consideration of the important modal periods of hydraulic structures (T’= 0.25
and 0.5 see), an extensive numerical evaluation is made of the accuracy of the

computed response values solved at regular increments in time during ground
motion. These error assessments are given for the four response variables of rela-
tive displacement, relative velocity, relative acceleration, and total acceleration.
This assessment involved the evaluation of 432 response time-histories. The
following conclusions are made regarding the factors affecting the accuracy of
results computed using each of the six numerical step-by-step procedures in this

study:

a. The two variables shown to have the most influence on the accuracy of the
computed results for the four response parameters are the time-step At and
the frequency content of the ground motion (characterized by~ or,
equivalently, T’).

b. The accuracy in the computed results for the four response parameters
increases as the value assigned to At decreases.

(1) A value of At equal to 0.02 see for the damped SDOF systems ana-
lyzed would be acceptable for long-period ground motion (T~ = 1 see,

& = 1 Hz), but not acceptable for high-frequency ground motion (T,
= 0.05 sec,~ = 20 Hz).

(2) A reduction in the time-step At from 0.02 see to 0.01 sec remarkably
improves the accuracy in computed response. However, inaccuracies
are still present in the response values for all six numerical step-by-
step procedures for the high-ficquency ground motion (T~ = 0.05 see,
&=20 Hz).

(3) A fiu-t.her reduction in the time-step At from 0.01 sec to 0.005 sec
eliminates all errors for the six numerical methods in all but the high-
frequency ground motion (1” = 0.05 see,&= 20 Hz). The range in
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errors for peak and valley values and the error in maximum response
for the four response parameters is less than 10 pereent.

c. The accuracy in the computed results for the four response parameters
increases as the frequency content of the ground motion decreases (as f~ +
Oor, equivalently, as Tg + CO).

d. The accuracy in the computed results for the four response parameters is

shown to correlate with the ratio At/T~. Thus, the impact of the two most
important parameters on the accuracy of the computed results can be char-
acterized in terms of a single variable. The results show that accuracy
considerations require the value for the ratio At/T~ to be less than 0.2. A

value of 0.1 for the ratio At/T~ is shown to be sufficiently accurate for all
six numerical step-by-step procedures.

e. The value of Tg relative to the value of TOhas the most impact on accuracy

of computed results when T~and Toare close to the same value. - However,
its influenee is seeondary compared with the influence of At and T~.

J The computed values of relative acceleration are slightly more accurate

than the computed values of relative displacement, relative veloeity, and
total acceleration.

g. The results show that of the six numerical step-by-step procedures, the

Wilson O method is the least accurate and the Central Difference Method
is the most accurate. An improvement in the accuracy of results computed

using the Wilson (3method will be achieved if 0 is set equal to 1.42, rather
than the 1.38 value used in this study, according to Chopra (1995,
page 581). However, the differences in the accuracy of the computed
results among the six numerical step-by-step procedures for the SDOF sys-
tems are minor compared with the significance of At and T~.
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5 Results and Conclusions

5.0 Introduction

This report summarizes an assessment of the accuracy of six numerical step-

by-step procedures used in computational structural dynamics. The six algorithms
used in this study are representative of the different types of procedures used to
compute the dynamic structural response to a time-dependent loading. The time-
dependent loading envisioned in this research is that of the motion of the ground
below a discrete structural model and is expressed in terms of a ground accelera-
tion time-history. The dynamic structural response for each structural model used
in this study is characterized by the computed response time-histories of accelera-
tions, velocities, and displacements.

All structural models used in this study were linear, singledegree-of-freedom

(SDOF) systems. The natural (undamped) periods To of these SDOF systems
were selected based on consideration of the important modal periods of hydraulic
structures such as gravity dams, arch dams, gravity lock walls, U-fiarne locks, and
intake towers. Each of the forcing fi,mctions used in this study was single-
frequency harmonics. The use of a single frequency facilitated the evaluation of
the accuracy of the computed response values solved for at regular time
increments during ground motion.

The time increments At used in this study were 0.02, 0.01, and 0.005 sec.

These values are typical of the At used in discretizing earthquake acceleration
time-histories recorded in the field on strong motion accelerographs,

The six algorithms included in this study were the Newmark ~ method (with
values of constants y and ~ corresponding to the linear acceleration method), the
Wilson 0 method, the Central Difference Method, the 4* Order Runge-Kutta
method, Duhamel’s integral solved in a piecewise exact fashion, and the Piecewise
Exact Method applied directly. All of these algorithms were used in their discre-
tized forms (i.e., the loading and response histories were divided into a sequence of
time intervals); thus, they are characterized as step-by-step procedures.

The selection of the size of the time-step At to be used in the step-by-step cal-

culation of the dynamic response of the SDOF (and of MDOF semidiscrete
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structural models) is restricted by stability amlor accuracy considerations. The
primary requirement of a numerical algorithm is that the computed response con-

verge to the exact response as At + O (Hughes 1987). However, the number of

computations increases as the time-step At is made smaller in a dynamic analysis,
an important issue for response analysis of semidiscrete MDOF structural system
models.

In addition to accuracy considerations, stability requirements must also be con-

sidered during the selection of the time-step At to be used in a step-by-step
response analysis by either of the three numerical integration methods or by the
numerical differentiation method. Stability criterion is expressed in terms of a
maximum allowable size for the time-step AtCtitiCol.The value for AtCtitiCuldiffers
among the four numerical algorithms.

No stability criterion (expressed in terms of a limiting time-step value) is
needed for Duhamel’s integral solved in a piecewise exact fashion and the Piece-

wise Exact Method applied directly. These two methods formulate exact solutions
to the equation of motion for assumed forms of the timedependent forcing fimc-

tions. There is only a question of the accuracy of the assumed form for the forcing
function for the size time-step At being used in the analysis. In general, larger
time-steps are likely to make the assumed form for the forcing fimction less valid.

5.1 Stability Requirements for the Four Numerical
Methods Used for Response Analysis

Stability requirements for numerical methods are expressed in terms of a lim-

iting or critical time-step AtctitiCal.The stability criteria for the three numerical
integration methods and for the numerical differentiation method used in this study

are evaluated in Chapter 3. The following conclusions are made regarding the
stability requirements:

a. The Wilson e method with (3equal to 1.38 and the 4* Order Runge-Kutta
method are unconditionally stable with no requirements made on the time-
step At used in the analyses.

b. The linear acceleration method, of the Newmark-~ family, and the Central
Difference Method are conditionally stable. However, since the SDOF

systems ustxl in this research are subjected to ground motion with At set
equal to either 0.02, 0.01 or 0.005 see, it is concluded that the computa-
tions using these two numerical methods are stable.

Additionally, the following observation is made: in most earthquake
engineering/dynamic structural response analyses, a time-step At equal to either
0.02, 0.01, or 0.005 sec is commonly used to define the ground motion accel-
eration time-history. In general, stability will not be an issue for the computed
results when using either the linear acceleration method or the Central Difference
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Method for SDOF systems with To ranging from 0.25 sec to 0.5 sec. The time-
step At used to accurately define the ground motion will be much smaller than the

At..fic~~value for either of these numeri~ methfi.

5.2 Accuracy of Response of SDOF Systems to
Ground Motion

A review is made in Section 4.1.2 of the current guidance for selecting the

time-step At used in computing the dynamic response of SDOF and MDOF
models to ground motion. Recall that a ground acceleration applied at the base of

an SDOF system is equivalent to a fixed-base SDOF system with the forcing func-
tion applied to the mass. Current guidance is shown to be based on studies of the
accuracy of numerical methods using the computed results fromfiee vibration
response analyses of undamped SDOF systems combined, frequently, with usefid

but qualitative reference to the frequency characteristics of the forcing function.
This criterion is often expressed as a fraction of the natural (undamped) period of

the SDOF system for a specified level of accuracy. The current guidance given by
Chopra (1995), Gupta (1992), and the American Society of Civil Engineers
(1986) Standard ASCE 4-86, on the factors to be considered in choosing the value
of At is as follows:

a. Chopra (1995, pages 172-173) concludes his discussion of computational
error with the observations that ”... the time step should be short enough to
keep the distortion of the excitation fimction to a minimum. A very fine
time step is necessary to describe numerically the highly irregular earth-
quake ground acceleration recorded during earthquakes; typically, At=
0.02 seconds is chosen and this dictates a maximum time step for comput-
ing the response of a structure to earthquake excitation.”

b. Gupta (1992, page 155) recommends that “the time step used in the

response computations is selected as the smaller of the digitized interval of
the earthquake acceleragrarn or some fraction of the period of free vibra-
tion, for example T/lO.”

c. The ASCE 4-86 Standard (page21) states that an acceptable rule for time-
history response analysis is that the time-step At used be small enough
such that the use of l/2At does not change the response by more than
10 percent. For the commonly used numerical step-by-step procedures of

Wilson 6 and Newmark ~, the maximum time-step size should be one-
tenth (1/10) the shortest period of interest, and for the Piecewise Exact
Method (or Nigarn-Jennings Method) the maximum time-step size should
be one-fifth ( 1/5) the shortest period of interest. Normally, the shortest
period of interest need not be less than 0.03 wc (33 Hz for nuclear
structures).
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Paz (1991, page 155), Gupta (1992, page 155), Clough and Penzien (1993,
pages 128-129), and Chopra (1995, pages 172-173) all recognize that the assign-

ment of time-step At in response analysis to forced vibration should consider the
following factors:

a. The natural period of the structure.

b. The rate of variation of the loading fimction.

c. The complexity of the stifliess and damping fimctions.

Using damped SDOF system models (~ = 0.05) with natural periods assigned
based on consideration of the modal periods of hydraulic structures with signifi-
cant response contribution (TO= 0.25 and 0.5 see), an extensive numerical evalua-

tion is made of the accuracy of the computed response values solved for at regular
increments in time during ground motion. The numerical results, given in Tables 1

through 6 and in Figures 13 through 20, show the interrelationship between the
accuracy of the six numerical step-by-step procedures with the harmonic charac-
teristics of the ground motion (using T~= 0.05, 0.25 and 1 see) and the time-step
At value (0.02, 0.01 or 0.005 see) used in the analysis of each of the damped

SDOF systems. These error assessments are given for the four response variables
of relative displacement, relative velocig, relative acceleration, and total accel-

eration. The following conclusions are made regarding the accuracy of the six
numerical step-by-step procedures used in this study:

a. All six numerical step-by-step procedures provide accurate results for
ground motion with a range in frequency& from 1 Hz to 20 Hz (or, equiv-
~entlY, Tg from 0.05 sec to 1 see) when a 0.005-sec time-step is used in

the numerical analysis.

b. The accuracy of computed results diminishes with increasing time-step

value used in the numerical step-by-step analysis.

c. Numerical errors are observed when solving for the SDOF system
response to high-frequency ground motion ~%= 20 Hz or T~= 0.05 see)

when the time-step At is increased from 0.005 see to 0.01 wc in the
numerical response analysis. No numerical errors are observed when
solving for the SDOF system response to intermediate and low-frequency
ground motions (&= 4 and 1 Hz or Tg= 0.25 and 1 see) when the time-
step At is set equal to O.01 sec in the numerical analysis.

d. Numerical errors are observed when solving for the SDOF system
response to the entire spectrum of ground motion frequencies ~~ = 20 Hz
or T~= 0.05 sec,f~ = 4 Hz or Tg= 0.25 see, and~~ = 1 Hz or Tg = 1 see)
when the time-step At is increased from 0.01 see to 0.02 sec in the numer-
ical analysis. The magnitudes of these errors increase as the ffequency~~

contained within the ground motion increases. The magnitude of error for
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“f

g.

h.

i.

some response parameters is likely to be unacceptable with At set equal to
0.02 see in the response analysis.

The accuracy in the computed results for the four response parameters
increases as the frequency content of the ground motion decreases (as~~ +
O or, equivalently, as Tg + CO).

The accuracy in the computed results for the four response parameters is
shown to correlate with the ratio At/T%. Thus, the impact of the two most
important parameters on the accuracy of the computed results can be char-

acterized in terms of a single variable. The results show that accuracy
considerations require the value for the ratio At/T~ to be less than 0.2.A

value of 0.1 for the ratio At/T~ is shown to be sufficiently accurate for all
six numerical step-by-step procedures.

The value of Tg relative to the value of TOhas the most impact on accuracy

of computed results when Tgand TOare close to the same value.- However,
its influence is secondary compared with the influence of At and T~.

The computed values of relative acceleration are slightly more accurate

than the computed values of relative displacement, relative velocity, and
total acceleration.

The results show that of the six numerical step-by-step procedures, the

Wilson (3method is the least accurate and the Central Difference Method
is the most accurate. The accuracy of results computed using the Wilson
0 method will be improved if O is set equal to 1.42, rather than 1.38 used
in this study, according to Chopra (1995, page 581). However, the differ-
ences in the accuracy of the computed results among the six numerical

step-by-step procedures for the SDOF systems are minor compared with
the significance of At and T~.

The authors envision that the error summaries given in Tables 1 through 6 and

in Figures 13 through 20 maybe used to establish an acceptable time-step At
value to be used in earthquake engineering dynamic response analyses of SDOF
structures (with ~ = 0.05) using any one of the six numerical step-by-step pro-
cedures. The scenario may be as follows: Information regarding the frequencies
contained within the acceleration time-history is made available (e.g., from
response spectra or Fourier amplitude plots). For a predefine level of accuracy
in response parameter(s) and given knowledge of the fi-equency characteristics of

the ground motion (i.e.,~ or T~),these tables and figures may be used to establish
the minimum At value for accuracy considerations. The three possible outcomes
are as follows:

68

a. The minimum At value for accuracy considerations is smaller than the At
value contained within this ground motion that was initially proposed for
use in the structural response analysis. This situation will require replace-
ment of the initial ground acceleration time-history (used to generate this
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b.

c.

5.3

initial~~, T~ information) with one that has been processed at this finer
time-step so that numerieal error(s) contained within the dynamic struc-
tural response analysis will be within acceptable levels.

The minimum At value for accuracy considerations is much larger than the
At value contained in this (initial) acceleration time-histo~. Considera-
tions related to computational efficiency in the dynamic structural response
analysis (i.e., engineering costs) may dictate that a coarser time-step be
used in the response analysis. The time-step maybe increased by first
transferring the acceleration time-hi~tory signal to the frequency domain
and then returning the signal back to the time domain but with a new,
coarser time-step.

The minimum At value for accuracy considerations is equal to the At value

contained in the initially selected ground motion. The dynamic structural
response analysis then proceeds using this ground motion.

Baseline Correction of Ground Motion

As a general rule to avoid inaccurate response predictions, the ground accel-
eration time-history used to represent earthquake excitation in the dynamic
response analyses of linear SDOF and semidiscrete MDOF structural models shall

be baseline corrected. Baseline correction is essential in the response analysis of
nonlinear structural systems.

5.4 Observations Made Regarding Response Anal-
ysis of Semidiscrete MDOF System Models

Discussions in this report regarding the accuracy of computed response using

six numerical step-by-step procedures have fbcused on the response analysis of
SDOF systems. This section discusses some observations made regarding
response analysis of semidiscrete MDOF system models.

In general, the numerical step-by-step procedures used in solving linear SDOF

systems in this report are easily extended to deal with MDOF models by replacing
the Chapter 2 scalar quantities by matrices. This type of formulation is a direct
solution of the equation of motion (the matrix form of Equation 5 in Chapter 2).
Thus, the solution for the time-history of response is performed directly by a
numerieal step-by-step algorithm dealing simultaneously with all degrees of free-
dom (DOF) in the response veetor. However, for an MDOF model of a hydraulic
structure, such as an arch dam, with a large number of DOF’S, it is computa-
tionally advantageous to transform the equation of motion to modal coordinates
before carrying out the time response analysis. The reason is that, in most cases,
the significant response of the dam structure can be adequately described by the
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few lowest vibration modes, and thus solution of the complete set of equations is
avoided (Ghanaat 1993). For example, Engineer Manual (EM) 1110-2-2201
(Headquarters, U.S. Army Corps of Engineers, 1994, pages 7-12 and 7-13) states
that for linear-elastic response, a sufficient number of modes should be included so
that at least 90 percent of the total dynamic response is achieved. For large arch
dams this usually involves all vibration modes with frequencies less than 10 Hz.
Smaller arch dams, which are stiffer, may reach their 90 percent level of responses
when all vibration modes under 20 Hz are considered.

This second type of formulation makes use of modal methods to transform the

extensive number of equations of motion for the MDOF system model into uncou-
pled modal equations for a much smaller series of SDOF equations of motion.
These transformed SDOF equations of motion are solved at each step in time
(i.e., time t, t + At, t + 2At, etc.). Superposition is used to combine responses
computed by each SDOF equation of motion in each mode, for the complete

dynamic response of MDOF model at each increment in time. A change from the
actual (i.e., finite element) coordinate basis is made to the basis of eigenvectors for
the modal generalized equations in this formulation. Lastly, because superposition
is employed in the analytical formulation, use of this procedure is restricted to
linear MDOF models. Refer to Bathe and Wilson ( 1976), Clough and Penzien
(1993), Ghanaat (1993), or Chopra (1995) for additional details regarding this
formulation.

5.4.1 Stability requirements

The stability criterion for the linear acceleration method and the Central Differ-

ence Method, expressed in terms of a critical time-step AtctitiC.l,was shown not to
be restrictive on the response analyses for the SDOF systems analyzed in Chap-
ter 4. Recall that for the SDOF system with TOequal to 0.25 see, the smallest
values of AtCtitiCdlare computed to be O.138 sec for the linear acceleration method
and 0.08 sec for the Central Difference Method. The time-steps At used in the
SDOF response analyses are set equal to 0.02,0.01, and 0.005 sec (Chapter 4).

The stability of a numerical method is a critical consideration in the analysis of

MDOF semidiscrete structural models to earthquake excitation. Along with
others, Chopra (1995, page 566) observes that conditionally stable procedures can
be used effectively for analysis of linear response of large MDOF semidiscrete
structural models by time history-modal response analysis. This flexibility is due
to the fact that only those (lower) modes that contribute to the MDOF model
response are typically used in the time-history response computations and, thus,
control the assignment of the largest time-step At that can be used in the numerical
analysis (Chopra 1995, pages 574-575, or Hughes 1987, page 493). Chopra
(1995, page 575) observes that when using a direct solution of the equations of
motion of a large, semidiscrete MDOF system model or when all modes are

included in a time history-modal response analysis, the limiting time-step

70 Chaptar 5 Results and Conclusions



associated with conditionally stable algorithms may be prohibitive. Uncondition-
ally stable numerical methods are usually more advantageous for these response
analyses.

5.4.2 Accuracy of response

All numerical step-by-step procedures used in solving linear MDOF system
models must be cognizant of the issue of accuracy, whether the formulation used
is a direct solution of the equation of motion (the matrix form of Equation 5 in

Chapter 2) or when using time history-modal response analysis. This numerical
investigation of the accuracy of response of SDOF systems to base excitation did
not include MDOF system models. Additionally, it is recognized that there are

many different types of MDOF system response analysis formulations and each is
likely to have its own unique characteristics with regard to the issue of accuracy of
computed response(s). Some of the factors contributing to these differences
include not only the general solution formulation to the equation of motion for the
MDOF system model, but also the finite element stifiess and mass formulations
used in the model, as well as the method used to incorporate darnping in the analy-
sis. In the inteti and until the results from additional detailed numerical studies

become available, the following approximation is suggested to answer the ques-
tion: Is the time-step in which the ground acceleration time-histo~ is discretized
sufficiently small to provide for an adequate level of accuracy in the computed
dynamic structural response(s) for the damped semidiscrete MDOF system model
(~= 0.05)?

a. Make an initial selection of a ground acceleration time-history for the proj-

ect and make available idormation regarding the frequencies contained
within the acceleration time-history.

b. Develop a semidiscrete or discrete (finite element) model of the hydraulic
structure and conduct a modal analysis to identify the first J modes with a
signzjlcant contribution to system response for the MDOF model compris-
ing N modes (with J < N). For many types of hydraulic structures the

dynamic response is often dominated by the first few modes (i.e.,
J <<< N). A sufficient number of modes have been identified if the sum of

the modal massparticipation factors is greater than or equal to 90 percent.
Alternatively, simplified procedures may be used to approximately com-
pute these modal periods (when these procedures are available for the type
of hydraulic structure being analyzed). Use of simplified procedures is
entirely appropriate in this exercise to compute the natural periods of these
J modes. For example, Fenves and Chopra (1986) describe a simplified
procedure to compute the natural period of a concrete gravity dam section.
Experience has shown that dynamic response of concrete gravity dams is
dominated by first mode response (J = 1). A simplified procedure for com-
puting the first two modal periods (J= 2) of intake towers (developed by
the third and first authors of this report) is described in Appendix B of
Engineer Circular 1110-2-285 (Headquarters, U.S. Army Corps of
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Engineers, 1995). Experience has shown that dynamic response of intake

towers is dominated by the first two modes.

c. Given the frequency content of the ground motion~ of interest and the At
to which the acceleration time-history is discretized, use the error sum-
maries given in Tables 1 through 6 and in Figures 13 through 20 to assess

the accuracy of computed response(s) for each of the J modes. Since the
data given are only for two natural periods (i.e., To= 0.25 sec and To =
0.5 see), interpolation/extrapolation may be required.

d. For hydraulic structures whose dynamic response is dominated by first
mode response, the error computed in step 3 (c) is the approximation for
the accuracy of computed response for the time-step At for which the
ground acceleration time-history is discretized. An assessment of the ade-
quacy of the error in computed response is then made. If deemed accept-
able, step 3 is repeated for all other response parameters of interest. If any
response parameter error is deemed unacceptable, another ground accel-

eration time-history possessing a finer time-step should be obtained.
Recall that the time-step At for ground acceleration time-histories is usu-
ally equal to 0.02, 0.01, or 0.005 sec. The process should be repeated

using this new acceleration time-history.

e. For hydraulic structures whose response is dominated by contributions of
more than one mode, the results from the following two simplified proce-
dures should be considered: (1) approximate the total error in the specified
response parameter as the largest of the response errors of the modes; or
(2) approximate the total error as the weighted sum of the error of each

mode. The value assigned to each weighting factor is intended to account
for contribution of that mode to the total response. Values of the mass
modal participation factors are expected to be usefil data in this

evaluation.

5.4.3 Numerical damping of high-frequency response

Numerical damping in a step-by-step analysis of a semidiscrete MDOF struc-
tural model is advantageous because it filters out response contributions from
high-frequency modes that result from the numerical structural model idealization
and not an actual property of the structure. Chopra (1995, page 576) observes
that ‘Wilson’s method provides for numerical damping in modes with period T.
such that At./T. z 1.0; other methods are also available.” Refer to Chopra ( 1995,
pages 575-576) or to Hughes (1987, pages 498-499) for firther details regarding
this topic.
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5.4.4 Nonlinear analysis

Classical modal analysis is not used for time-history response analysis of non-
linear structural systems because of coupling between modal equations (Chopra
1995, page 574). Unconditionally stable procedures are generally neeessary for
nonlinear response analysis of such systems (Chopra 1995, page 566).
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Appendix A
Exact Solution to SDOF System

Sine Wave Base Excitation

The equation of motion for a single-degree-of-freedom system subjected to a

base excitation is

i(t) + 2pmi(t) + Ozx(t) = -iwwd(t)

where

(Al)

Xwmd(t) = pga sinti[
..

(A2)

andpga is the peak ground acceleration or amplitude of sinusoidal base excitation.
The solution to this differential equation is

x(f) = e-~ ’’f(AeosoDt +BsinuDt)

[

_ pga (1 -r2)sinGt-2~reos Gt

~2 (1 -rz)z +(2pr)2 1
where

and
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T = 2 B
Tg

0x( t ) = e &$T t [ (BTD & AT$ ) cos TD t & (BT$ % ATD ) sin TD t ]

&
pga r
T

(1& r 2 ) cosT t % 2$ r sin T t

(r 2 & 1)2 % (2$ r)2

A = &
pga

T2

2$ r

(1 & r 2 )2 % (2$ r )2

B = 1
TD

AT$ %
pga r
T

1 & r 2

(2r$ )2 % (r 2&1)2

ẍ( t ) = e &$T t AT2$2&2BTDT$&AT2
D cosTDt

% BT2$2 % 2ATDT$ & BT2
D sinTD t

% pga r 2 (1 & r 2 ) sin T t & 2$ r cos T t

(r 2&1)2 % (2$ r)2

ẍtotal( t ) = ẍground( t ) % ẍ( t )

= &[2$T 0x( t ) % T2 x( t ) ]

A2 Appendix A   Exact Solution to SDOF System

(e.g., Clough and Penzien 1993).  The values assigned to T  and pga, the peakg

ground acceleration, in this study are reported in Figure 7, Chapter 4.  Taking the
time derivative of Equation A3 gives

(A4)

The constants A and B can be determined by evaluating Equations A3 and A4 for
the boundary conditions x(t = 0) = 0, and x0 (t = 0) = 0:

(A5)

and

(A6)

The relative acceleration is determined by taking the time derivative of the relative
velocity:

(A7)

The total acceleration, ẍ (t), is simply the sum of the relative acceleration plus total 

the ground acceleration

(A8)



Appendix B
Fourier Series

Fourier showed that any periodic fimction maybe expressed as the summation

of an infinite number of sine and cosine terms (e.g., Paz 1985). Such a-sum is
known as a Fourier series:

P(t) = aO + alcos tit + azc0s2tit + . + ancosntit
(Bl)

+ blsin~t + bzsin2~t + ... + b~sinn~t

or

P(t) = aO + ~ (a. cm n~t + b. sin rzfit) (B2)
~=1

where G = 2n/Tg is the circular frequency, and Tg is the period of the base excita-
tion. The evaluation of the coefficients aO,an, and b. is given by

t, +Tg

a,= + J P(t)df
&’ tl

t,+ TX

2
a=— f ()P t cos n~tdt

n
T1?

tl

t,+ T=

+
/ ()P t sin n~tdt

g tl

(B3)

(B4)

(B5)
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where t, in the limits of the integrals may be any value of time, but is usually equal

-T~2 or zero. The constant aOrepresents the average of the periodic fimction P(t).

Representing the forcing fimction by a piecewise linear fimction, the Fourier

coefficients are the summation of the integrals evaluated for each linear segment of
the forcing fimction:

‘+$ j’p(t)dtao –
g ‘ ti.,

2 ~ ~ P(t) cos n~tdt
,

a=—
n Tg i=1

ti-,

(B6)

(B7)

ti

bn = $ ~ ~P(t) sin n~tdt (B8)

g’ t,.,

where N = the number of segments in the piecewise forcing fi.mction. The forcing
function in any interval ti-,s t s tiis expressed by

P(t) = P(ti.l) + !!jt -ti_l) (B9)

where

APi = P(ti) - P(ti_l) (B1O)

Substituting Equation B9 into Equation B7 and performing the integration gives:

‘(ti) +‘(ti-~)
At

2 1
(Bll)
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an [=# ~ +[p(t,-~)‘fi-~~1(sinrztiti - sinrzGti_l)

g’ no

APi
+ [(cosntiti - Cosn:fi_l)

n2~2At

and

bn =

+

{[

APi
+g~— ~(~;.~) -~;.~ *t

1
(cosnZti - cosnGti_l)

g’

APi
[(sin ntit, - sinnfiti_l)

n2~2At

(B12)

(B13)

The response of the SDOF system to a periodic force represented by a Fourier

series is the superposition of the response to each component of the series. When
the transient is omitted, the total steady state response of a damped SDOF system
may be expressed:

(B14)

(B15)

and
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where

nG
r=—

n
u

(B 16)
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